

Lecture Notes in Computer Science 1734
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Hermann Hellwagner
Alexander Reinefeld (Eds.)

SCI: Scalable
Coherent Interface

Architecture and Software
for High-Performance Compute Clusters

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Hermann Hellwagner
University of Klagenfurt, Institute of Information Technology
A-9020 Klagenfurt, Austria
E-mail: hermann.hellwagner@uni-klu.ac.at

Alexander Reinefeld
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Takustr. 7, D-14195 Berlin-Dahlem, Germany
E-mail: ar@zib.de

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

SCI - Scalable coherent interface : architecture and software for
high-performance compute clusters / Hermann Hellwagner ; Alexander Reinefeld
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 1999

(Lecture notes in computer science ; Vol. 1734)
ISBN 3-540-66696-6

CR Subject Classification (1998): C.2, D.1-4, B.2-8

ISSN 0302-9743
ISBN 3-540-66696-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

c© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10704208 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

Preface

Background

System interconnection networks have become a critical component of the
computing technology of the late 1990s, and they are likely to have a great
impact on the design, architecture, and use of future high-performance com-
puters. Indeed, it is today not only the sheer computational speed that distin-
guishes high-performance computers from desktop systems, but the efficient
integration of the computing nodes into tightly coupled multiprocessor sys-
tems. Network adapters, switches, and device driver software are increasingly
becoming performance-critical components in modern supercomputers.

Due to the recent availability of fast commodity network adapter cards
and switches, tightly integrated clusters of PCs or workstations have emer-
ged on the market, now filling the gap between desktop systems and super-
computers. The use of commercial off-the-shelf (COTS) technology for both
computing and networking enables scalable computing at relatively low costs.
Some may disagree, but even the world champion in high-performance com-
puting, Sandia Lab’s ASCI Red machine, may be seen as a COTS system.
With just one hardware upgrade (pertaining to the Intel processors, not the
network), this system has constantly been number one in the TOP-500 list of
the worldwide fastest supercomputers since its installation in 1997. Clearly,
the system area network plays a decisive role in overall performance.

The Scalable Coherent Interface (SCI, ANSI/IEEE Standard 1596-1992)
specifies one such fast system interconnect, emphasizing the flexibility, scala-
bility, and high performance of the network. In recent years, SCI has become
an innovative and widely discussed approach to interconnecting multiple pro-
cessing nodes in various ways. SCI’s flexibility stems mainly from its com-
munication protocols: in contrast to many other interconnects, SCI is not
restricted to either message-based or shared-memory communication models.
Instead, it combines both, taking advantage of similar properties that have
been investigated in such hybrid machines as Stanford’s FLASH or MIT’s
Alewife architectures. Since SCI also defines a distributed directory-based
cache coherence protocol, it is up to the computer architect to choose from
a broad range of communication and execution models, including efficient
message-passing architectures, as well as shared-memory models, in either
the NUMA or CC-NUMA variants.

VI Preface

European industry and research institutions have played a key role in the
SCI standardization process. Based on SCI adapter cards, switches, and fully
integrated cluster systems manufactured by European companies, the SCI
community in Europe has made and is making significant developments and
state-of-the-art research on this important interconnect.

Purpose of the Book

From many discussions with friends, colleagues, and potential users, we found
that one significant barrier to the widespread deployment and use of SCI is
the lack of a clear vision of how SCI works, how it is being used in building
clusters, and how obstacles in its deployment can be avoided. Our goal in
compiling this book is to address these barriers by providing in-depth infor-
mation on the technology and applications of SCI from various perspectives.
The book focuses on SCI clusters built from commodity PCs or workstati-
ons and SCI adapters, since they represent the mainstream and most cost-
effective application of SCI to date.

In addition, some challenging research issues, mostly pertaining to shared-
memory programming on SCI clusters, are discussed and potential improve-
ments for SCI cluster equipment are highlighted.

Who is the intended audience? The relevance of the book for computer
architects is obvious, given the importance of system area networks for mod-
ern high-performance computers. But the book is also intended for system
administrators and compute center managers who plan to invest in cluster
technology with COTS components. Furthermore, researchers and students
wanting to contribute to this interesting technology with their own hard- or
software developments might find this book helpful.

Organization of the Book

The book consists of nine parts, each subdivided into chapters covering in-
dividual topics. On the whole, the contributions cover the complete hard-
ware/software spectrum of SCI clusters, ranging from the major concepts of
SCI, through SCI hardware, networking, and low-level software issues, va-
rious programming models and environments, up to tools and application
experiences.

Part I introduces the SCI standard and its application in practical compu-
ter systems. SCI is put into context by comparing its concepts, architecture,
and performance with its strongest competitor Myrinet and also with the
proprietary Cray T3D interconnection network which set the standards back
in 1993.

Part II looks at the hardware. It describes two implementations of SCI
adapters, the commercial, widely used Dolphin SCI cards for the PCI and
SBus I/O buses, and the prototype adapter developed at TU München which
can be extended by special hardware for monitoring the SCI packet flow.

Preface VII

Building on the hardware, Part III explores how to build SCI interconnec-
tion networks and analyzes various critical aspects of SCI networks, among
them ringlet scalability and potential performance degradation by hardware-
generated retry traffic.

Part IV moves on to software, describing the functionality and concrete
implementations of SCI device drivers and introducing a low-level API that
abstracts away SCI’s distributed shared memory (DSM) implementation de-
tails from higher-level software.

The first class of parallel and distributed programming models, namely
message-passing libraries on top of SCI, are covered in Part V. The chapters
report on projects which implemented sockets, TCP/IP, PVM, and MPI with
high efficiency on top of SCI, by making judicious use of the SCI DSM and
related features.

As pointed out by the contributions in Part VI, developing shared-memory
programming environments on SCI clusters with current SCI hardware and
driver software is more challenging than implementing message-passing libra-
ries. Partly due to the lack of well established shared-memory standards, the
approaches described are widely diverse. They range from specific shared vir-
tual memory systems on top of SCI to a fully transparent, distributed thread
system and to shared, parallel objects extending a CORBA middleware im-
plementation. The chapters discuss some of the limitations of current SCI
cluster equipment and present potential routes for future developments.

Real-world experiences with SCI clusters are reported in Part VII. As
a reference, benchmark and application performance results from the very
large SCI clusters that are operated at PC2 Paderborn are given first. The
parallelization approaches and performance results from two projects, a com-
plex molecular dynamics code and a real-time data acquisition and filtering
application prototype for high-energy physics, are described as examples of
real-world uses of SCI clusters.

Part VIII deals with tools for SCI clusters, which apparently are still in
their infancy. Therefore, only two basic SCI monitors, one implemented in
hardware, the other in software, and their potential applications are presented
here. In addition, a powerful system management tool, developed to operate
the large Paderborn clusters as general-purpose, multi-user compute servers
is introduced.

Both SCI and SCI interconnects are still evolving in terms of standar-
dization, product development, research findings, and applications. In the
final part, Part IX, therefore, one of the designers of SCI, David Gustavson,
describes the perspectives that he sees for SCI.

Acknowledgements

With great pleasure, we acknowledge the efforts of the many individuals who
have contributed to the development of this book. First and foremost, we
thank the authors for their enthusiasm, time, and expertise which made this

VIII Preface

book possible. We are also grateful to the people who helped in organizing the
book, especially Oliver Heinz (PC2 Paderborn), Hans-Hermann Frese (ZIB
Berlin), and Angelika Rossak (University Klagenfurt). The European Com-
mission provided financial support through the ESPRIT IV Programme’s SCI
Working Group (EP 22582). Finally, we acknowledge the help of Alfred Hof-
mann and Antje Endemann of Springer-Verlag, who were always competent,
professional, and efficient partners to work with.

September 1999 Hermann Hellwagner
Alexander Reinefeld

Table of Contents

Part I. SCI and Competitive Interconnects for Cluster Computing

1. The SCI Standard and Applications of SCI
Hermann Hellwagner . 3

1.1 Introduction . 3
1.2 SCI Overview . 4

1.2.1 Background . 4
1.2.2 Goals . 4
1.2.3 Concepts . 6
1.2.4 Discussion . 11

1.3 The SCI Standard and Some Extensions 11
1.3.1 Logical Layer . 12
1.3.2 Cache Coherence Layer . 19
1.3.3 Extensions . 22

1.4 Applications of SCI . 23
1.4.1 System Area Network for Clusters 23
1.4.2 Memory Interconnect for Cache-Coherent

Multiprocessors . 26
1.4.3 I/O Subsystem Interconnect . 30
1.4.4 Large-Scale Data Acquisition System 31

1.5 Related Communication Networks and Concepts 31
1.6 Concluding Remarks . 34

2. A Comparison of Three Gigabit Technologies:
SCI, Myrinet and SGI/Cray T3D
Christian Kurmann, Thomas Stricker . 39

2.1 Introduction . 39
2.2 Levels of Comparison . 40

2.2.1 Direct Deposit . 41
2.2.2 Message Passing (MPI/PVM) . 42
2.2.3 Protocol Emulation (TCP/IP) . 44

2.3 Gigabit Network Technologies . 45
2.3.1 The Intel 80686 Hardware Platform 46
2.3.2 Myricom Myrinet Technology . 47

X Table of Contents

2.3.3 Dolphin PCI-SCI Technology . 48
2.3.4 The SGI/Cray T3D – A Reference Point 48
2.3.5 ATM: QoS – But Still Short of a Gigabit/s 50
2.3.6 Gigabit Ethernet – An Outlook . 50

2.4 Transfer Modes . 51
2.4.1 Overview . 51
2.4.2 “Native” and “Alternate” Transfer Modes in the Three

Architectures . 54
2.5 Performance Evaluation . 56

2.5.1 Performance of Local Memory Copy 58
2.5.2 Performance of Direct Transfers to Remote Memory . . 58
2.5.3 Performance of MPI/PVM Transfers 61
2.5.4 Performance of TCP/IP Transfers 64
2.5.5 Discussion and Comparison . 65

2.6 Summary . 67

Part II. SCI Hardware

3. Dolphin SCI Adapter Cards
Marius Christian Liaaen, Hugo Kohmann . 71

3.1 Introduction . 71
3.2 Overview of the Adapter Cards . 71
3.3 Operating Modes of the SCI Cards . 73
3.4 SCI Requester . 74

3.4.1 Address Mapping . 74
3.4.2 SCI Transaction Handling . 75
3.4.3 SCI Packet Requester . 77

3.5 SCI Responder . 78
3.5.1 Mailbox . 79
3.5.2 Access Protection . 79
3.5.3 Atomic Access . 79
3.5.4 Host Bridge Capabilities . 80

3.6 DMA Transfers . 80
3.6.1 DMA Transfers on the SBus Card 80
3.6.2 DMA Transfers on the PCI Card 80

3.7 Interrupter . 81
3.8 Concurrency Issues . 81

3.8.1 Write Assembly . 81
3.8.2 Efficient Store Barrier . 81

3.9 Performance . 82
3.10 Applications and Topologies . 82

3.10.1 SAN Interface Adapter . 83
3.10.2 Remote I/O Connection and Data Acquisition 83

Table of Contents XI

3.10.3 Switches and Topologies . 83
3.11 Cluster Software . 85

4. The TUM PCI/SCI Adapter
Georg Acher, Wolfgang Karl, Markus Leberecht 89

4.1 Introduction . 89
4.2 The PCI/SCI Adapter Architecture . 90
4.3 SCI Packet Encoding and Decoding . 92

4.3.1 Overview of Packet Processing . 92
4.3.2 Choosing the Technology . 92
4.3.3 Internal Structure of the FPGA . 93
4.3.4 Structure of the Packet Manager as a Microcode

Sequencer . 95
4.3.5 Microcode Examples . 97
4.3.6 Benefits of the Micro Sequencer . 98

4.4 The SCI Unit . 99
4.5 Preliminary Results for the PCI/SCI Adapter 99
4.6 Related Work . 100
4.7 Conclusion . 100

Part III. Interconnection Networks with SCI

5. Low-Level SCI Protocols and Their Application to
Flexible Switches
Andreas C. Döring, Wolfgang Obelöer, Gunther Lustig, Erik Maehle 105

5.1 Introduction . 105
5.2 Data Format of SCI Packets . 105
5.3 Flow Control . 107

5.3.1 Flow Control in Rings . 107
5.3.2 Packet Sequence in SCI . 108
5.3.3 Determination of State Transitions 109

5.4 Bandwidth Multiplexing . 110
5.4.1 Bandwidth Management in One Ring 110
5.4.2 Idle Symbols . 112
5.4.3 Time-Out Determination . 113

5.5 Network Interface . 113
5.5.1 Requirements . 114
5.5.2 Products . 114

5.6 Routers . 115
5.6.1 Requirements . 115
5.6.2 Products and Challenges . 116
5.6.3 Flexible Router . 117
5.6.4 Strip-off Decision . 118

XII Table of Contents

5.6.5 Routing Decision and Topology . 119
5.7 Rule-Based Routing . 120
5.8 Conclusion and Outlook . 121

6. SCI Rings, Switches, and Networks for Data Acquisition
Systems
Harald Richter, Richard Kleber, Matthias Ohlenroth 125

6.1 Introduction . 125
6.2 SCI-based Data Acquisition Systems . 126
6.3 SCINET Test Beds . 127
6.4 Measurement Results . 129
6.5 SCI Switches . 134
6.6 Efficient Use of SCI Switches . 136
6.7 Multistage SCI Networks . 139
6.8 Simulation Results . 141
6.9 Summary and Conclusions . 146

7. Scalability of SCI Ringlets
Geir Horn . 151

7.1 Do SCI Ringlets Scale in Number of Nodes? 151
7.2 Ringlet Bandwidth Model . 152

7.2.1 Transaction Formats . 152
7.2.2 Packet Generation . 155
7.2.3 Address Distribution . 155
7.2.4 Locality . 156
7.2.5 Bypass Rate . 157
7.2.6 Echo Packet Rate . 158
7.2.7 Output Link Utilization Factor . 160

7.3 Scalability Evaluation . 160
7.3.1 Common Assumptions . 161
7.3.2 Uniform Ringlet Traffic . 162
7.3.3 Non-uniform Ringlet Traffic . 162
7.3.4 Changing Packet Lengths . 163

7.4 Discussion . 163
7.5 Conclusion . 165

8. Affordable Scalability Using Multi-Cubes
H̊akon Bugge, Knut Omang . 167

8.1 Introduction . 167
8.2 Interconnect Overview . 168
8.3 Methodology . 168
8.4 Analysis . 170

8.4.1 “Hot-Link” Analysis . 170

Table of Contents XIII

8.4.2 “Hot-B-Link” Analysis . 171
8.5 Results . 172
8.6 Conclusions . 174

Part IV. Device Driver Software and Low-Level APIs

9. Interfacing SCI Device Drivers to Linux
Roger Butenuth, Hans-Ulrich Heiss . 179

9.1 Introduction . 179
9.2 Layers of Functionality . 180

9.2.1 Address Spaces . 180
9.2.2 Levels of Hardware Abstraction . 180
9.2.3 Resource Management . 182
9.2.4 Virtual Mapping . 183
9.2.5 Robustness . 184

9.3 Why Linux? . 185
9.4 Interfaces of the Driver . 186

9.4.1 Hardware . 186
9.4.2 Linux . 187
9.4.3 User Processes . 188
9.4.4 SCI Drivers on Other Nodes . 188

9.5 Conclusions . 189

10. SCI Physical Layer API
Volker Lindenstruth, David B. Gustavson . 191

10.1 Introduction . 191
10.1.1 Scope of the Standard . 192

10.2 SCI Physical Layer API Architecture and Features 193
10.2.1 Exception Handling . 195
10.2.2 Endianness . 195

10.3 Supported Data Types . 196
10.4 Miscellaneous Procedures . 196
10.5 Address Translation Model . 197

10.5.1 Global Object Identifier . 199
10.5.2 SCI Global Address Resolution . 200

10.6 Shared Memory Transactions . 200
10.7 Packet Transactions . 202
10.8 Block Transactions . 202
10.9 Message Passing Transactions . 203
10.10Cache Transactions . 204
10.11Conclusions . 205

XIV Table of Contents

Part V. Message Passing Libraries

11. SCI Sockets Library
Hermann Hellwagner, Josef Weidendorfer . 209

11.1 Introduction . 209
11.1.1 Rationale . 209
11.1.2 Overview . 210

11.2 Features and Design . 210
11.2.1 Features . 210
11.2.2 Components . 211
11.2.3 Communication via the SSLib . 212
11.2.4 Connection Setup . 214
11.2.5 Handling Special System Calls . 216
11.2.6 Other Calls Intercepted and Handled by the SSLib . . . 218
11.2.7 Out-of-Band Data . 218

11.3 Implementation Aspects . 218
11.3.1 Communication Among Components 218
11.3.2 SSLib Layers . 219
11.3.3 Choice of Most Efficient Communication Mechanism . . 220
11.3.4 SSLib Implementations . 221
11.3.5 Control Transfers . 221

11.4 Functional Tests and Performance . 222
11.5 Related Work . 224
11.6 Conclusions . 227

12. TCP/IP over SCI under Linux
Hüseyin Taskin, Roger Butenuth . 231

12.1 Introduction . 231
12.2 SCIP Structure . 232

12.2.1 Packet Driver Interface . 232
12.2.2 Hardware Address Resolution . 232
12.2.3 Other Implementation Issues . 233

12.3 Performance . 234
12.3.1 Configuration . 234
12.3.2 Latency . 234
12.3.3 Throughput . 235

12.4 Conclusion . 237

13. PVM for SCI Clusters
Markus Fischer, Alexander Reinefeld . 239

13.1 Overview . 239
13.2 Parallel Virtual Machine . 239

Table of Contents XV

13.2.1 PVM Implementations . 240
13.2.2 Models for Zero-Memory-Copy Data Transfer 241

13.3 SCI Communication Model . 242
13.4 PVM-SCI . 243

13.4.1 System Architecture . 243
13.4.2 Supporting Multiple Interconnects 245
13.4.3 Reducing Memory Copies . 245
13.4.4 Ring Buffer Management . 246
13.4.5 Performance Results . 247

13.5 Conclusions . 247

14. ScaMPI – Design and Implementation
L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, E. Rustad 249

14.1 Introduction . 249
14.2 Scali Systems . 249
14.3 The SCI Memory Model . 250

14.3.1 Coordinating Use of Shared Locations 251
14.3.2 Ensuring Safe Data Transport in SCI – Checkpointing 252
14.3.3 Shared Address Space Programming without the

Drawbacks . 252
14.4 ScaMPI Design Goals . 253
14.5 ScaMPI Implementation . 254

14.5.1 Fault Tolerance . 254
14.5.2 User Friendliness . 256
14.5.3 Third Party Software . 256

14.6 Performance Results . 257
14.6.1 Barrier . 258
14.6.2 All-to-All Communication . 259

14.7 Conclusions . 260

Part VI. Shared Memory Programming Models and Runtime
Mechanisms

15. Shared Memory vs Message Passing on SCI: A Case
Study Using Split-C
Max Ibel, Michael Schmitt, Klaus Schauser, Anurag Acharya 267

15.1 Introduction . 267
15.1.1 Introduction to Split-C . 268
15.1.2 Introduction to Active Messages . 269

15.2 Message-Passing Implementation . 269
15.2.1 Active Messages on Top of SCI . 269
15.2.2 Split-C on Top of Active Messages 272

15.3 Shared Memory Implementation . 273

XVI Table of Contents

15.3.1 Split-C on Top of SCI . 273
15.4 Experimental Evaluation . 274

15.4.1 Micro-benchmarks . 274
15.4.2 Application Benchmarks . 276

15.5 Hybrid Implementation . 277
15.5.1 Basic Framework . 277
15.5.2 Mapping Strategies . 278

15.6 Conclusions . 279

16. A Shared Memory Programming Interface for SCI
Clusters
Marcus Dormanns, Karsten Scholtyssik, Thomas Bemmerl 281

16.1 Introduction . 281
16.2 Platform Properties: System Image and Memory Model 282

16.2.1 System Image and Operational Model 282
16.2.2 Memory Model . 283

16.3 User Front-End . 284
16.4 The Application Programmer’s Interface 284

16.4.1 Initialization and Execution Environment 286
16.4.2 Memory Management . 286
16.4.3 Synchronization . 288
16.4.4 Loop Scheduling . 288

16.5 Conclusions . 289

17. True Shared Memory Programming on SCI-based
Clusters
Martin Schulz . 291

17.1 Introduction . 291
17.2 Designing a Global Virtual Memory . 292

17.2.1 Building Block 1: SCI-based Hardware DSM 292
17.2.2 Building Block 2: Software DSM Systems 293
17.2.3 Combining Both Building Blocks to the SCI-VM 293
17.2.4 Locality Issues and Caching . 294

17.3 SCI-VM Implementation Challenges . 295
17.3.1 Mapping of Individual Page Frames 295
17.3.2 Dynamically Paged Memory . 296
17.3.3 Enabling Caching Using Relaxed Consistency 296

17.4 Framework for SCI-VM-based Programming Models 297
17.4.1 SCI-VM Interface . 297
17.4.2 Tradeoff Between Transparency and Performance 298
17.4.3 Current Status of the Framework 298

17.5 SPMD Programming Model on Top of SCI-VM 299
17.5.1 The Execution Model . 299
17.5.2 Allocating Shared Memory . 300

Table of Contents XVII

17.5.3 Synchronization . 300
17.5.4 Consistency Model . 301

17.6 Experiments and Results . 302
17.6.1 Experimental Setup . 302
17.6.2 Results for the Numerical Kernels 302
17.6.3 Results for the Volume Rendering Code 304

17.7 Using the SCI-VM for Transparent Multithreading. 305
17.7.1 Transparent Thread Distribution 305
17.7.2 Synchronization Mechanisms . 306
17.7.3 Applying a Relaxed Consistency Model 306

17.8 Related Work . 307
17.9 Conclusions and Future Work . 308

18. Implementing a File System Interface to SCI
P.T. Koch, J.S. Hansen, E. Cecchet, X. Rousset de Pina 313

18.1 Introduction . 313
18.1.1 Motivation . 313
18.1.2 SCI-based File Systems . 314
18.1.3 Outline . 314

18.2 Sharing in File Systems . 315
18.2.1 Memory-Mapped Files . 315
18.2.2 UNIX Example with a Memory-Mapped File 316
18.2.3 File Consistency . 316
18.2.4 Synchronization . 317

18.3 Issues for Implementing SCI-based File Systems 317
18.3.1 A Virtual File System. 318
18.3.2 Files and Directories . 319
18.3.3 Example of Vnode/vfs Data Structures 319
18.3.4 Virtual File System Operations . 320
18.3.5 Interaction with the Virtual Memory System. 321
18.3.6 Remote Memory Mappings and File Consistency 322
18.3.7 Synchronization . 322

18.4 The SciOS Prototype . 323
18.4.1 SciOS Memory Protocols . 323
18.4.2 Main File System Data Structures 324
18.4.3 The GLOBAL Memory Protocol 325
18.4.4 Memory Protocol Implementation in Linux 327

18.5 Related Work . 328
18.6 Summary and Conclusions . 329

19. Programming SCI Clusters Using Parallel CORBA
Objects
Thierry Priol, Christophe René, Guillaume Alléon 333

19.1 Introduction . 333

XVIII Table of Contents

19.2 Parallel vs. Distributed Programming . 333
19.3 An Overview of CORBA . 335
19.4 Parallel CORBA Objects . 336

19.4.1 Execution Model . 336
19.4.2 Extended-IDL . 337
19.4.3 Implementation of Parallel CORBA Objects 340

19.5 The Cobra Runtime System . 340
19.5.1 Cobra Services . 341
19.5.2 Cobra Software Architecture . 342

19.6 A Case Study: The IDAHO Application 344
19.7 Related Work . 346
19.8 Conclusion and Perspectives . 347

20. The MuSE Runtime System for SCI Clusters: A Flexible
Combination of On-Stack Execution and Work Stealing
Markus Leberecht . 349

20.1 Introduction . 349
20.2 The MuSE System. 351

20.2.1 The SMiLE Cluster of PCs . 351
20.2.2 The Multithreaded Scheduling Environment 352

20.3 Experimental Evaluation . 357
20.3.1 Basic Runtime System Performance 357
20.3.2 Load Balancing and Parallelism Generation 358

20.4 Related Work and Conclusion . 362

Part VII. Benchmark Results and Application Experiences

21. Large-Scale SCI Clusters in Practice: Architecture and
Performance
Jens Simon, Alexander Reinefeld, Oliver Heinz 367

21.1 Introduction . 367
21.2 PSC System Architecture . 367

21.2.1 Node Configuration . 368
21.2.2 SCI Interconnect . 369
21.2.3 Software Configuration . 370

21.3 Standard Benchmarks . 371
21.3.1 Low-Level MPI Benchmarks . 371
21.3.2 Parallel Linpack . 373
21.3.3 FFT Benchmarks . 374
21.3.4 HINT Benchmark . 375

21.4 Applications . 376
21.5 Summary . 379

Table of Contents XIX

22. Shared Memory Parallelization of the GROMOS96
Molecular Dynamics Code
Marcus Dormanns . 383

22.1 Introduction . 383
22.2 The GROMOS Code . 384

22.2.1 General Code Characteristics . 384
22.2.2 Structure of the Code . 384

22.3 Parallelization . 386
22.3.1 Starting with Parallelism and Coordinating I/O 386
22.3.2 Parallelization of the Interaction Calculation Kernels . . 387

22.4 Performance Results . 392
22.4.1 Hardware Platform . 392
22.4.2 Results . 392
22.4.3 Performance Comparison to Other Parallel GROMOS

Implementations . 393
22.5 Conclusion . 394

23. SCI Prototyping for the Second Level Trigger System of
the ATLAS Experiment
A. Belias, A. Bogaerts, D. Botterill, J. Dawson, E. Denes,
F. Giacomini, R. Hauser, C. Hortnagl, R. Hughes-Jones, S. Kolya,
D. Mercer, R. Middleton, J. Schlereth, P. Werner, F. Wickens 397

23.1 Introduction . 397
23.2 The ATLAS Trigger System . 397
23.3 Low-Level API . 399

23.3.1 Basic Performance Measurements 400
23.4 The ATLAS Level-2 Trigger Demonstrator 403

23.4.1 Hardware . 405
23.4.2 Software . 406
23.4.3 Vertical Slice Configurations . 407
23.4.4 Conclusions . 410

23.5 Objectives and Design of the Second Prototype 410
23.5.1 Lessons Learned from the Demonstrator 410
23.5.2 Testbed . 411
23.5.3 Software . 413
23.5.4 SCI Testbed . 413

XX Table of Contents

Part VIII. Tools for SCI Clusters

24. SCI Monitoring Hardware and Software: Supporting
Performance Evaluation and Debugging
Wolfgang Karl, Markus Leberecht, Michael Oberhuber 417

24.1 Introduction . 417
24.2 The Monitoring Approach for the SMiLE PC Cluster 418
24.3 The Controlled Deterministic Execution Approach (CODEX) 422
24.4 Controlling Execution with SMiLE . 425

24.4.1 Mapping POEM to the SMiLE Architecture 425
24.4.2 Controlling Execution on SMiLE 426
24.4.3 A Framework for an Implementation of CODEX for

Fine-Grained DSM Execution . 428
24.5 Related Work . 430
24.6 Conclusion . 430

25. Monitoring SCI Clusters
Matthias Maier-Stahel, Roger Butenuth, Hans-Ulrich Heiss 433

25.1 Motivation . 433
25.2 General Architecture . 434
25.3 Monitor Agents . 434
25.4 Master . 436
25.5 Visualizer . 437
25.6 Conclusion . 440

26. Multi-User System Management on SCI Clusters
Matthias Brune, Axel Keller, Alexander Reinefeld 443

26.1 Introduction . 443
26.1.1 Hardware Scenario . 443
26.1.2 Software Scenario . 444
26.1.3 User Access and System Management 445

26.2 Architecture of CCS . 445
26.2.1 Island Concept . 445
26.2.2 User Interface . 446
26.2.3 Scheduling . 448
26.2.4 Partitioning the System . 450
26.2.5 Job Creation and Control . 451
26.2.6 Reliability . 453

26.3 Resource and Service Description . 454
26.3.1 Graphical Representation . 455
26.3.2 Textual Representation . 456
26.3.3 Internal Data Representation . 457

Table of Contents XXI

26.4 Related Work . 459
26.5 Summary . 459

Part IX. Perspectives

27. Industrial Takeup of SCI and Future Developments
David B. Gustavson . 465

27.1 SCI’s Cultural Context . 465
27.2 SCI Marketing and Adoption . 469
27.3 Commercial Adoption of SCI . 472

27.3.1 Interface Chips and Products . 472
27.3.2 Coherent Shared Memory Implementations 473
27.3.3 Non-coherent Implementations . 475

27.4 Future Directions . 476
27.4.1 IEEE P2100 (SerialPlus) . 477
27.4.2 Concurrent Buses—A New Name for this Technology . 478
27.4.3 Concurrent Behavior is Essential for Scalability 479

List of Contributors . 481

Subject Index . 487

Part I

SCI and Competitive Interconnects for Cluster
Computing

Scalable Coherent Interface (SCI) is an innovative, comprehensive, high-
performance interconnect technology providing solutions for a wide range of
applications. The focus of this book is on one of these applications, namely
compute clusters based on multi-Gigabit SCI cluster networks.

To put this application and the articles in this book into perspective, this
first part of the book provides an introduction to the rationale, important
concepts and protocols, benefits and limitations, and the wealth of potential
applications of the SCI interconnect standard. SCI is extremely flexible, with
its applications ranging from compute and server clusters, to highly scalable,
cache-coherent shared-memory multiprocessors, distributed I/O systems, and
novel ways of coupling processors and memories.

SCI also comprises a whole family of standards; even the base standard
can be viewed as covering three standards: the physical layer, the logical
layer, and the cache-coherence protocols of a shared-memory interconnect.
Unfortunately—probably due to the complexity of the specification—SCI has
not achieved its goal of becoming a truly open, widely accepted interconnect
system that allows diverse devices by multiple vendors to be readily plugged
in, as enabled by open bus specifications, for instance. Rather, proprietary
implementations in many of the application areas have emerged, with vendors
making changes and extensions to the base SCI specification as suited to their
needs.

Chapter 1 briefly covers these aspects of SCI. It provides an introduction
to the core SCI technology underlying this book, alludes to compatible ex-
tensions of the SCI standard, and describes “classical” applications of SCI.
The latter comprise the use of SCI as a system area network for clusters, as a
memory interconnect for scalable cache-coherent multiprocessors, as an I/O
subsystem interconnect, and as the communication infrastructure for high-
performance data acquisition systems. Examples of existing products and
research prototypes are given. Furthermore, related Gigabit interconnection
networks and concepts are briefly reviewed.

H. Hellwagner, . Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 1-2, 1999
© Springer-Verlag Berlin Heidelberg 1999

2 SCI and Competitive Interconnects for Cluster Computing

Chapter 2 goes into the technical details and provides interesting per-
formance results of a comparison of several Gigabit network technologies,
predominantly the Dolphin SCI cluster interconnect and the Myricom Myri-
net system area network. The SGI/Cray T3D MPP network and its perfor-
mance are given as a reference point, as well as results on ATM and Gigabit
Ethernet representing the mainstream network technologies. A comprehen-
sive benchmark suite has been worked out for this investigation, covering
multiple communication software layers (raw data transfers, MPI-style and
TCP protocol-based communication) and aspects (e.g., transfer of data sto-
red non-contiguously in memory). The results disclose benefits and limita-
tions of the SCI-based Dolphin cluster interconnect and provide a thorough
quantitative comparison of important Gigabit networks.

1. The SCI Standard and Applications of SCI

Hermann Hellwagner

Institute of Information Technology, University of Klagenfurt
A–9020 Klagenfurt, Austria
email: hermann.hellwagner@uni-klu.ac.at
http://www.itec.uni-klu.ac.at/

1.1 Introduction

Scalable Coherent Interface (SCI) is an innovative interconnect standard
(ANSI/IEEE Std 1596-1992 [26]) that addresses the high-performance com-
puting and networking domain. This book describes in depth one specific
application of SCI, namely its use as a high-speed interconnection network
(often called a system area network) for compute clusters built from com-
modity workstation nodes. Yet, SCI’s original design does not specifically
address this segment and several other applications of SCI have been devised
and realized.

This chapter therefore provides the context for the rest of the book by
(1) introducing the basic concepts of SCI and related standards, and (2)
presenting the most important other uses and implementations of SCI not
covered by the contributions in this book.

In doing so, we will not delve deeply into the technology of SCI and its
various implementations, but rather concentrate on the essential concepts so
that the reader may acquire the basic knowledge required for the subsequent
chapters and perceive the flexibility and wide applicability of SCI.

For technical details, the interested reader is referred to the literature
pertaining to this chapter, most importantly the SCI standard document [26]
and several survey articles [16][18]. When needed, later chapters will provide
more background information on SCI, e.g., Chapter 5 on low-level protocols.

This introductory chapter is organized as follows. Section 1.2 summarizes
the principal objectives and features of SCI and attempts to assess the achie-
vements and current status of SCI. Section 1.3 presents essential concepts of
the base SCI standard in some more detail and refers to some of the exten-
sions developed so far or currently under discussion. Section 1.4 outlines four
application areas of SCI, namely its use as:

– a system area network for compute clusters, which will be treated in depth
in the remainder of this book;

– a memory interconnect for large-scale cache-coherent multiprocessors;
– an I/O subsystem interconnect; and
– an interconnect for high-performance data acquisition systems.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 3-37, 1999
© Springer-Verlag Berlin Heidelberg 1999

4 H. Hellwagner

Examples of existing systems are given there. Related interconnection net-
works and concepts are dealt with in Section 1.5. Concluding remarks are
given in Section 1.6. Other uses and future developments of SCI are also
addressed in Chapter 27.

1.2 SCI Overview

1.2.1 Background

SCI has its origins in an effort of bus experts in the late 1980s to define
a very high performance computer bus (“Superbus”) that would support a
significant degree of multiprocessing (i.e., number of processors). However,
the group soon realized that backplane bus technology would not be able
to meet this requirement, despite advanced concepts like split transactions
and sophisticated, expensive implementations of the latest bus standards and
products.

The reasons are that (1) a bus is a centralized resource and, thus, an in-
herent serial bottleneck that would be exacerbated by ever faster micropro-
cessors, and (2) bus signaling is already approaching its fundamental limits
(speed of light), resulting in electrically complex and expensive solutions and
in short bus lengths. Both factors limit scalability to a few state-of-the-art,
high-speed microprocessors that can be well served by a common bus.

As a result, the committee abandoned the bus-oriented view and deve-
loped novel, distributed solutions to overcome the shared-resource and sig-
naling problems, while retaining the overall goal of defining an interconnect
that offers the convenient services well known from centralized buses.

The resulting specification, SCI, finally approved in 1992, thus descri-
bes hardware and protocols that provide processors with the shared-memory
view of buses. SCI also specifies related transactions to read, write, and lock
memory locations without software protocol involvement, as well as to trans-
mit messages and interrupts. Hardware protocols to keep processor caches
coherent are defined as an implementation option. In contrast to most pre-
vious solutions, the SCI interconnect, the memory system, and the associa-
ted protocols are fully distributed and scalable: an SCI network is based on
point-to-point links only, implements a distributed shared memory (DSM) in
hardware, and avoids serialization in almost any respect.

1.2.2 Goals

Several ambitious goals guided the specification process of SCI and partly
determined its name.

1. The SCI Standard and Applications of SCI 5

High performance. The primary objective of SCI, as of any interconnec-
tion network and associated protocols, is to deliver high communication per-
formance to parallel or distributed applications. This comprises three aspects
[14]:

– high sustained throughput;
– low latency;
– low CPU overhead for communication operations.

The performance goals set forth were in the range of GBit/s link speeds and
latencies in the low microseconds range in loosely-coupled systems, even less
in tightly-coupled multiprocessors.
Scalability. SCI was devised to address scalability in many respects, among
them [17]:

– scalability of performance (aggregate bandwidth) as the number of nodes
attached to the system grows;

– scalability of interconnect distance, from centimeters to tens or even hun-
dreds of meters, depending on the media and physical layer implementa-
tion, yet based on the same logical layer protocols;

– scalability of the memory system, in particular of the cache coherence pro-
tocols, which must not have a built-in limit on the number of processors or
memory modules that could be handled;

– technological scalability, i.e., (1) use of the same mechanisms in large-scale
and small-scale as well as tightly-coupled and loosely-coupled systems, and
(2) the ability to readily make use of advances in technology, e.g., high-
speed links;

– economic scalability, i.e., use of the same mechanisms and components
in low-end, high-volume and high-end, low-volume systems, opening the
possibility to leverage the economies of scale of mass production of SCI
hardware;

– no short-term practical limits to the addressing capability, i.e., an addres-
sing scheme for the DSM wide enough to support a large number of nodes
and a large memory on each node.

Coherent memory system. Caches are becoming ever more important
for modern microprocessors to reduce average access time to data. This spe-
cifically holds for a DSM system with NUMA characteristics (non-uniform
memory access) where remote accesses can be roughly an order of magnitude
more expensive than local ones. To support a convenient programming model
as known, e.g., from symmetric multiprocessors (SMPs), the caches should
be kept coherent in hardware.
Interface characteristics. The SCI specification was intended to describe
a standard interface to an interconnect that would enable multiple devices
from multiple vendors to be attached and to interoperate. In other words, SCI
should serve as an open distributed bus connecting components like micropro-
cessors, memory modules, and intelligent I/O devices in a high-speed system.

6 H. Hellwagner

1.2.3 Concepts

Many of the goals have been met, but some have not. In the following, the
major concepts and features of SCI will be summarized and an attempt will be
made to assess the achievements and the current status of SCI, as represented
by several implementations of SCI networks.

Point-to-point links. An SCI interconnect is defined to be built only from
unidirectional, point-to-point links between participating nodes. These links
can be used for concurrent data transfers, in contrast to the one-at-a-time
communication characteristics of buses. The number of the links grows as
nodes are added to the system, increasing the aggregate bandwidth of the
network. The links can be made fast and their performance can scale with
improvements in the underlying technology. They can be implemented in a
bit parallel manner (for small distances) or in a bit serial fashion (for larger
distances), with the same logical-layer protocols.

Most implementations today use parallel links over distances of a few
centimeters or meters.

Sophisticated signaling technology. The data transfer rates and lengths
of shared buses are inherently limited due to signal propagation delays and
signaling problems on the transmission lines, such as capacitive loads that
have to be driven by the sender, impedance mismatches, and noise and signal
reflections on the lines. The unidirectional, point-to-point SCI links avoid
these signaling problems. Since there is only a single transmitter and a single
receiver rather than multiple devices (capacitive loads), the signaling speed
can be increased significantly. High speeds are also fostered by low-voltage
differential signals; see Section 1.3.3.

Furthermore, SCI strictly avoids back-propagating signals, even reverse
flow control on the links, in favor of high signaling speeds and scalability. (A
reverse flow control signal would make timing of, and buffer space required for,
a link dependent on the link’s distance [18].) Thus, flow control information
becomes part of the normal data stream in the reverse direction, leading to
the requirement that an SCI node (as described below) must at least have
one outgoing link and one incoming link. Many of these link-level issues and
low-level protocols are discussed in Chapter 5.

SCI link speeds today reach 500 MByte/s in system area networks (di-
stances of a few meters, 16-bit parallel links, clocked at 125 MHz, differen-
tial signals, CMOS technology) [9] and 1 GByte/s in closely-coupled, cache-
coherent shared-memory multiprocessors (GaAs link controller) [41]; transfer
rates of 1 GByte/s have also been demonstrated over a distance of about 100
meters, using parallel fiber-ribbon cables and BiCMOS link-level devices [13].

Nodes. SCI was designed to connect a large number of nodes (up to 64k).
A node can be a complete workstation or server machine, a processor and its
associated cache only, a memory module, I/O controllers and devices, or brid-
ges to other buses or interconnects, as illustrated exemplarily in Figure 1.1.

1. The SCI Standard and Applications of SCI 7

Each node is required to have a standard interface to attach to the SCI net-
work, as described in Section 1.3. In most SCI systems implemented so far,
nodes are complete machines, often even multiprocessors.

Work-
station

Memory
P & C

SCI ringlet

SCI-VME bridge SCI-ATM converter

Switch

Node

Ring of rings 2D torus

SCI node

Fig. 1.1. Simple SCI network topologies

Topology independence. In principle, SCI networks with complex topolo-
gies could be built; investigations into this area are described, e.g., in Chap-
ters 6 and 8. However, the standard anticipates simple topologies to be used.
For small systems, for instance, the preferred topology is a small ring (a
so-called ringlet); for larger systems, topologies like a single switch connec-
ting multiple ringlets, rings of rings, or multidimensional tori are feasible; see
Figure 1.1.

Most SCI systems to date use single rings, a switch, multiple rings, or
two-dimensional tori. Special applications with well-known communication
patterns or very high bandwidth requirements may require specific multistage
topologies to be devised, as shown exemplarily for a data acquisition system
in Chapter 23.

Fixed addressing scheme. SCI uses the 64-bit fixed addressing scheme
defined by the Control and Status Register (CSR) Architecture standard
(IEEE Std 1212-1991) [25]. The 64-bit SCI address is divided into two fixed
parts: the most significant 16 address bits specify the node ID (node address)
so that an SCI network can comprise up to 64k nodes; the remaining 48
bits are used for addressing within the nodes, in compliance with the CSR
Architecture standard.

8 H. Hellwagner

While this addressing model meets the requirement of ample addressing
capability, conversion from the 32-bit address space that most nodes employ
today, to the 64-bit global SCI address space becomes necessary. An example
of this address transformation is given in Chapter 3.

Hardware-based distributed shared memory (DSM). The SCI ad-
dressing scheme spans a global, 64-bit address space; in other words, a phy-
sically addressed, distributed shared memory system. The distribution of the
memory is transparent to software and even to processors, i.e., the memory
is logically shared, just as in a system with a centralized bus and shared
memory. A memory access by a processor is mediated to the target memory
module by the SCI hardware.

The major advantage of this feature is that inter-node communication
can be effected by simple load and store operations by the processor, without
invocation of a software protocol stack. The instructions accessing remote
memory can be issued at user level; the operating system need not be involved
in communication. This results in very low latencies for SCI communication,
typically in the low microseconds range.

A major implementation challenge, however, is how to integrate the SCI
network (and, thus, access to the system-wide SCI DSM) with the memory
architecture of a standard single-processor workstation or a multiprocessor
node. Sections 1.4.1 and 1.4.2 will describe the common solutions – attaching
SCI to the I/O bus or to the memory bus – in more detail.

Bus-like services. To complete the hardware DSM, SCI defines transac-
tions to read, write, and lock memory locations, functionality well-known
from computer buses. In addition, message passing and global time synchro-
nization are supported, both as defined by the CSR Architecture; interrupts
can be delivered remotely as well. Broadcast functionality is also defined.

Transactions can be tagged with four different priorities. In order to avoid
starvation of low-priority nodes, fair protocols for bandwidth allocation and
queue allocation have been developed. Bandwidth allocation is similar in
effect to bus arbitration in that it assigns transfer bandwidth (if scarce) to
nodes willing to send. Queue allocation apportions space in the input queues
of heavily loaded, shared nodes, e.g., memory modules or switch ports which
are targeted by many nodes simultaneously. Since the services have to be
implemented in a fully distributed fashion, the underlying protocols are rather
complex.

Split transactions. Like modern multiprocessor buses, SCI strictly splits
its transactions into request and response phases. This is a vital feature to
avoid scalability impediments; that is, it makes signaling speed independent
of the distance a transaction has to travel and avoids monopolizing net-
work links. Transactions therefore have to be self-contained and are sent as
packets, containing a transaction ID, addresses, commands, status, and data
as needed. A consequence is that multiple transactions can be outstanding

1. The SCI Standard and Applications of SCI 9

per node. Transactions can thus be pumped into the network at a high rate,
using the interconnect in a pipeline fashion.

Most SCI systems today do make use of this feature in order to achieve
high throughput rates, yet not to the full extent of 64 outstanding transac-
tions as defined in the standard. The decoupled nature of transactions again
adds complexity due to the need of keeping track of outstanding packets and
more complicated flow control.

Optional cache coherence. SCI defines distributed cache coherence pro-
tocols, based on a distributed-directory approach (doubly-linked sharing list
per shared, cacheable memory block), a multiple readers–single writer sha-
ring regime, and write invalidation [24]. The memory coherence model is
purposely left open to the implementor, allowing sequential consistency or
more relaxed memory models to be realized in SCI systems. The standard
provides optimizations for common situations such as pairwise sharing that
improve performance of frequent coherence operations.

The cache coherence protocols are designed to be implemented in hard-
ware; however, they are highly sophisticated and complex. The complexity
stems from a large number of states of coherent memory and cache blocks,
correspondingly complex state transitions, and the advanced algorithms that
ensure atomic modifications of the distributed sharing lists (e.g., insertions,
deletions, invalidations). The greatest complication arises from the integra-
tion of the SCI coherence protocols with the snooping protocols typically
employed on the nodes’ memory buses. Although the standard specifies three
sets of coherence implementation options (the minimal set, a typical set, and
the full set), the implementation is highly challenging and incurs some risks
and potentially high costs. Not surprisingly, only a few companies have done
implementations so far; see Section 1.4.2.

The cache coherence protocols are provided as options only. A compliant
SCI implementation need not cover coherence; an SCI network even cannot
participate in coherence actions when it is attached to the I/O bus as is the
case in the compute clusters addressed in this book; see Section 1.4.1. Yet, a
common misconception has emerged over the years that cache coherence is
required functionality at the core of SCI. This misunderstanding has clearly
hindered SCI’s fast proliferation for non-coherent uses, e.g., as a system area
network or a high-speed LAN.

Reliability in hardware. In order to enable high-speed transmission, error
detection is done in hardware, based on a 16-bit CRC code which protects
each SCI packet. Transactions and hardware protocols are provided that allow
a sender to detect failure due to packet corruption, and allow a receiver
to notify the sender of its inability to accept packets (due to a full input
queue) or to ask the sender to re-send the packet. Since this happens on a
per-packet basis, SCI does not automatically guarantee in-order delivery of
packets. This may have a considerable impact on software which would rely
on a guaranteed packet sequence. An example is a message passing library

10 H. Hellwagner

delivering data into a remote buffer using a series of remote write transactions
and finally updating the tail pointer of the buffer; see Chapter 11, for instance.
SCI hardware like Dolphin’s SCI cluster adapter provides functionality to
enforce a certain memory access order, e.g., via memory barrier operations;
see Chapter 3.

Various time-outs are provided to detect lost packets or transmission er-
rors. Hardware retry mechanisms or software recovery protocols may be im-
plemented based on the standard transmission-error detection and isolation
mechanisms; these are however not part of the standard. As a consequence,
SCI implementations today differ widely in the way errors are dealt with.

The protocols are designed to be robust, i.e., they should, for instance,
survive the failure of a node with outstanding transactions. For this purpose,
error containment and logging procedures, ringlet maintenance functions and
a packet time-out scheme are specified, among other mechanisms. Robustness
is particularly important for the cache coherence protocols which are desi-
gned to behave correctly even if a node fails amidst the modification of a
distributed sharing list.

Layered specification. The SCI specification is structured into three lay-
ers: the physical layer, the logical layer, and the optional cache coherence
layer. The latter two layers will be dealt with in more detail in Section 1.3.

At the physical layer, three initial physical link models are defined: a
parallel electrical link operating at 1 GByte/s over short distances (meters);
a serial electrical link that operates at 1 GBit/s over intermediate distances
(tens of meters); and a serial optical link that operates at 1 GBit/s over long
distances (kilometers).

Although the definitions include the electrical, mechanical, and thermal
characteristics of SCI modules, connectors, and cables, the specifications were
not adhered to in the early implementations. SCI systems today typically use
specific physical layer implementations, incompatible to others. It is fair to
say, therefore, that SCI has not become the open, distributed interconnnect
system that the designers had envisaged to create.

C code. One of the most remarkable features of the SCI standard is that
major portions are provided in terms of a “formal” specification, namely C
code. (Exceptions are packet formats and the physical layer specifications.)
Text and figures are considered explanatory only, the definitive specification
are the C listings. The major reasons for this approach are that C code is (lar-
gely) unambiguous and not easily misunderstood and that the specification
becomes executable, as a simulation. In fact, much of the specification was
validated by extensive simulations before release. This was deemed necessary
because SCI introduces new approaches and many novel, sophisticated distri-
buted protocols. The designers could not always be sure that their solutions
were correct and feasible.

1. The SCI Standard and Applications of SCI 11

1.2.4 Discussion

SCI addresses difficult interconnect problems and specifies innovative dis-
tributed structures and protocols for a scalable distributed shared memory
architecture. In doing so, the designers have come to cover a wide spectrum of
bus, network, and memory architecture problems, ranging from signaling con-
siderations up to distributed directory-based cache coherence mechanisms.

In fact, this wide scope of SCI has raised criticism that the standard is
actually “several standards in one” and difficult to understand and work with.
This lack of a clear profile and the wide applicability of SCI have probably
contributed to its relatively modest acceptance in industry.

Furthermore, as pointed out above, the SCI protocols are complex (albeit
well-devised) and not easily implemented in silicon. Thus, implementations
are quite complex and therefore expensive. (Yet, at the physical and logical
levels, they are simple compared to any split-transaction bus.)

In an attempt to reduce complexity and optimize speed, many of the im-
plementors adopted the concepts and protocols which they regarded as appro-
priate for their application, and left out or changed other features according
to their needs. This use of SCI led to a number of proprietary, incompatible
implementations.

As a consequence, the goal of economic scalability has not been satisfac-
torily achieved in general. (However, this does not necessarily hold for indivi-
dual companies which may well leverage the economies of scale for their own
implementation to achieve reasonable prices for their SCI products.)

As a further consequence, SCI has clearly also missed the goal of evolving
into an open distributed “bus” that multiple devices from different vendors
could attach to and interoperate.

However, in terms of the technical objectives, predominantly high per-
formance and scalability, SCI has well achieved its ambitious goals. The
vendors that have adopted and implemented SCI (in various flavors), offer
innovative high-throughput, low-latency interconnect products (see Sections
1.4.1 and 1.4.3) or full-scale shared-memory multiprocessing systems (see
Section 1.4.2).

1.3 The SCI Standard and Some Extensions

This section describes the most important concepts of SCI in further detail,
with a focus on the logical and coherence layers of the standard. For other
features and a comprehensive treatment, the interested reader is referred to
the standard document [26]. Some of the standards extending or supporting
the base SCI standard are referred to here as well.

12 H. Hellwagner

1.3.1 Logical Layer

The logical layer specifies transaction types and protocols, packet types and
formats, packet encodings, the standard node interface structure, bandwidth
and queue allocation protocols, error processing, addressing and initialization
issues, and SCI-specific CSRs.

Transactions. Transactions are split, consisting of a request and (for most
transactions) of a response subaction. Correspondingly, the nodes involved
are called the requester and the responder. A transaction is performed by
sending a request packet from the requester to the responder and a response
packet (if any) back to the requester. Packets carry addresses, command and
status information, and data (depending on the type of transaction). Up to
64 transactions can be outstanding per node.

Each subaction consists of a send packet generated by the sender and
an echo (acknowledgment) packet returned by the receiver; see Figure 1.2,
packets (1) and (2), for an illustration of this handshake on a request subac-
tion. The echo tells the sender whether the packet has been accepted (stored
in the receiver’s input queue for further processing) or rejected (e.g., due to a
full input queue). In the former case, the sender can discard the send packet
from its output queue (where it is required to be held); in the latter case, the
sender retransmits the packet.

A consequence of this rejection/retry mechanism is that in-order delivery
of packets cannot be guaranteed by the SCI hardware: a packet rejected
by a busy queue can be overtaken by a later packet which happens to find
space in the same queue. In addition, the retransmissions consume bandwidth
and aggravate congestion on an already busy network or on the input queue
of the “hot” receiver. Recent investigations have shown that this can have
a significant impact on the sustained throughput of a heavily loaded SCI
network; Chapter 6 reports on some of the results.

Figure 1.2 depicts the flow of packets for the more complicated case of
a remote transaction which involves nodes sitting on different rings and one
or more intermediate agents, e.g., bridges or switches coupling two or more
SCI rings. An agent takes over responsibility for a subaction when it crosses
rings, echoing the send packet on its source ring and forwarding it on to the
target ring. An echo therefore is only a ring-local acknowledgement, i.e., a flow
control action, not an end-to-end confirmation of the subaction. End-to-end
confirmation of a transaction is only provided by a response.

Transaction types. Transactions fall into three categories: transactions
with responses (read, write, and lock transactions), move transactions and
event transactions. The transactions further differ in the amount of data
they carry. An overview is given in Figure 1.3.

Transactions with responses are read, write, and lock accesses to DSM,
in various flavors. Read transactions copy data from the responder to the re-
quester, with 16, 64, or 256 bytes being transferred. In a 16-byte transaction,

1. The SCI Standard and Applications of SCI 13

Requester

Requ. Resp.

Responder

Agent

Requ.
Resp.

Requester Responder

Agent

Requester Responder

Agent

Requester Responder

Agent

Local request
subaction

Remote request
subaction

Remote response
subaction

Local response
subaction

➀ ➁

➂ ➃

(2) Request echo

(1) Request send (3) Request send

(4) Request echo

(5) Response send

(6) Response echo

(7) Response send

(8) Response echo

Requ. Resp. Requ. Resp. Requ. Resp.

Requ. Resp. Requ. Resp.Requ. Resp. Requ. Resp.

Requ.
Resp.

Requ.

Resp.
Requ.

Resp.

Fig. 1.2. Remote transaction phases

Header (16) Data (nn = 16, 64, or 256)writenn

Request Response

Header (16)

Header (16)readnn Header (16) Data (nn = 0, 16, 64, or 256)

Header (16)lock Header (16)Data (16) Data (16)

Header (16) Data (nn = 0, 16, 64, or 256)movenn

Header (16) Data (nn = 0, 16, 64, or 256)eventnn

Fig. 1.3. Transaction types (The numbers in parentheses denote the number of
bytes of the packets. For space-accounting purposes, the length of the packet header
includes the length of the trailer, the 2-byte CRC code.)

14 H. Hellwagner

the size of the valid data may be between 1 and 16 bytes (selected-byte reads,
readsb). 64 bytes, the size of a cache line in SCI, may be read in a coherent
and a non-coherent manner, which distinguishes whether or not the data
block is subject to coherence maintenance. Optionally, 256-byte transactions
may be provided to transfer large data blocks in a non-coherent way. 0-byte
reads are available as well, essentially only updating the coherence state of
the addressed cache line. Besides data, responses to read transactions carry
the status of the read operation.

Write transactions transfer data from the requester to the responder. The
data sizes and the variants are defined as for read operations, with some
minor exceptions; 0-byte writes are not supported. The responses to write
requests acknowledge the success or signal the failure of the write. The 16-byte
write transactions (selected-byte writes, writesb) are useful for manipulating
control registers. The non-coherent 64-byte write operations can be employed
for message passing according to the CSR standard.

The lock transaction specifies an indivisible operation (a read–modify–
write) to be performed on the target memory location and the old memory
contents to be delivered back to the requester. Such an atomic operation is
required to build efficient mutual exclusion locks or semaphores in a shared
memory system [24]. Early bus-based multiprocessor systems, for instance,
supported the test&set operation by an indivisible bus and memory cycle. In
a distributed system like an SCI network, the target node (the responder)
must be able to perform the atomic read–modify–write operation. SCI defines
a number of variants of this update operation to be provided by SCI memory
controllers, among them the well-known compare&swap and fetch&add ope-
rations. The lock transaction carries data in both directions, the new (or
update) value in the request packet and the old memory value in the res-
ponse packet, plus status information.

Move transactions carry data from the source node to the destination
node in a non-coherent way, like non-coherent writes. In contrast to write
transactions, however, move operations do not have a response subaction.
Consequently, moves are more efficient than writes, but correct data delivery
is unconfirmed at the logical protocol layer. (There is still flow control due to
the existence of the echo packet in the request subaction.) Moves are therefore
expected to be used when reliable transfer is less important than timeliness,
e.g., when data is written into a video frame buffer. Move transactions may
address a single node (directed move, dmove) or multiple nodes (broadcast
move). Broadcast moves and broadcast capability of nodes are specified as
options only. Special protocols are defined that ensure reliable delivery of the
broadcast even to nodes that are unable to accept it at first (because their
receive queues are full).

Event transactions are even more special than moves in that they lack
both confirmation and flow control, i.e., they have no response and do not
generate an echo. Event transactions are to be accepted and delivered without

1. The SCI Standard and Applications of SCI 15

delays. Their intended use was to distribute a time stamp for global time
synchronization in an SCI system; yet, they may also be used for fast data
transfers under certain provisions [18].

Packets. Corresponding to the transaction phases, there are four basic types
of SCI packets: request send, request echo, response send, and response echo
packets. In addition, SCI specifies special packets like init and sync packets
that are used during the system initialization process and for data stream
re-synchronization purposes, respectively.

As an example, the format of the request send packet is shown in Fi-
gure 1.4. As illustrated, a packet consists of a contiguous sequence of 16-bit
symbols. The packet header normally comprises seven symbols (14 bytes) and
the trailer (CRC code) one symbol (2 bytes).

Flow control

Target ID

Command

Time of death Transaction ID
Source ID

Symbol (16 bits)

Address offset

Header extension
(0 or 16 bytes)

Data
(0, 16, 64, or 256 bytes)

CRC code

Fig. 1.4. Request send packet format (simplified)

The first symbol of the header contains the address of the destination
node, target ID. Nodes receiving a packet on the incoming link inspect the
target ID symbol to quickly determine whether to accept the packet (take it
off the link) or to pass it on to the outgoing link.

The second symbol carries flow control information and the transaction
command. The flow control field contains information for the ring bandwidth
allocation and the queue allocation protocols, e.g., the packet priority and
a field identifying whether and why the packet has been retransmitted. The
command field specifies the type of the request transaction, e.g., readsb.

The third symbol provides the source ID, i.e., the address of the originator
of the packet.

The fourth symbol specifies the time of death of the packet, i.e., the global
time when it is to be discarded, and a 6-bit transaction ID. In conjunction
with the source ID, the latter allows to distinguish between up to 64 outs-
tanding transactions per node.

16 H. Hellwagner

The following three symbols specify the address offset to be used by the
responder, e.g., a memory address to fetch data from.

The optional header extension (16 bytes) is employed by certain cache
coherency transactions only.

Depending on the request type, the packet carries 0, 16, 64, or optionally,
256 bytes of data.

The 16-bit CRC code consumes the final symbol of the packet. The CRC
polynomial and a parallel hardware implementation model are specified in
the SCI standard so that CRC codes can be computed and checked at full
link speeds. The flow control information of the packet is excluded from the
CRC calculation since it changes during the passage of the packet through
the SCI network.

As compared to the request send packet depicted in Figure 1.4, response
send packets carry status information in place of the address offset. Echo
packets are considerably smaller than send packets, comprising four symbols
(8 bytes) only; see, e.g., Chapter 5 for a description. The special packets
required for network initialization and control are eight symbols (16 bytes)
long. All packets therefore consist of an integer multiple of four symbols,
which simplifies the design of systems that use wider data paths, whether as
internal paths or external cabled links.

Packet encodings and idle symbols. The 16-bit symbols are the basic
units for packet encoding. To encode and transmit a symbol, two extra signals
are needed in addition to the 16 data signals: a clock signal that determines
symbol boundaries and a flag signal that delineates the start and end of
packets. The well-devised use of this flag ensures that there need not be
special start and stop symbols locating packet boundaries.

A parallel SCI implementation, as exemplified by Dolphin’s Link Control-
ler chip [9], therefore typically comprises 18 parallel signal lines: the 16 data
signals, the clock, and the flag. For serial implementation, the SCI standard
encodes these 18 signals together with additional synchronization information
in a 20-bit unit.

In order to enable SCI links to run continuously and at high speeds, the
space between packets is filled up with so-called idle symbols. Idle symbols
serve two purposes: (1) they allow SCI nodes to permanently synchronize
the incoming data stream to the local clock, and (2) they transfer allocation
and other network control information; see, e.g., Chapter 5 for details. At
least one idle symbol must be present after a regular packet; special packets
may be transmitted back to back. Coarsely speaking, idle symbols are created
whenever a node takes a packet off the incoming link, and are replaced when a
node has to send a packet. A node stripping off an idle symbol is responsible
for saving and later re-inserting some of its control information such that,
e.g., the allocation protocols can work properly.

Allocation protocols. The queue allocation protocols ensure that space will
be reserved in the input queue of the receiver so that retransmitted packets

1. The SCI Standard and Applications of SCI 17

will eventually be accepted. On the other hand, the bandwidth allocation
protocols guarantee that the sender will eventually obtain bandwidth to be
able to send its packets. For a detailed discussion of these protocols and the
information that is transmitted through an SCI network to facilitate their
fair and efficient operation, refer to Chapter 5.

SCI node interface structure. An SCI node, more precisely its interface
to the SCI network, must perform a number of challenging tasks. For instance,
it must be able to insert packets onto the outgoing link, while concurrently
stripping off packets addressed to itself from the incoming link or buffering
(and later re-injecting) packets destined for other nodes, all at full link speeds.
Moreover, it must participate in the allocation protocols as well as network
maintenance and error processing, to that end observing, manipulating, and
creating the control information in packets and idle symbols. It must keep
track of outstanding transactions until confirmation or until a time-out, re-
transmit rejected packets, signal errors, and buffer transactions from or to
the node’s main components, e.g., the processor or a memory controller.

To address the complexity involved with these tasks, the SCI designers
have proposed a standard interface of an SCI node, to be implemented in
hardware. Figure 1.5 illustrates the interface model. Dolphin’s Link Control-
ler chip, for example, has been designed according to this model.

E
nc

od
e

 I
ns

er
t

 M
U

X Bypass FIFO

 Saved Idle

Elastic
Buffer

Stripper

(CRC)(CRC)

R
es

po
ns

es

R
eq

ue
st

s

R
es

po
ns

es

R
eq

ue
st

s

Responder

Requester

(Time-out)

(Echo)

Receive
queues

Transmit
queues

Input linkOutput link

Interface clock

Application logic (node)

Input clock

Node interface

domain

domain

Fig. 1.5. Standard SCI node interface structure

The node interface has an incoming SCI link and an outgoing SCI link.
On the input link, symbols arrive asynchronously w.r.t. the interface clock
and carry their own clock signal. The first stage of the interface is therefore
to synchronize the incoming data stream to the local clock domain in an
asynchronous circuitry called the elastic buffers. Idle symbols are inserted or
deleted in case the two clocks drift too far apart, subject to the rule that

18 H. Hellwagner

packets remain intact. The rest of the node interface is strictly synchronous,
greatly simplifying its design.

Packets addressed to the local node are taken off the link by the stripper
circuit and appended to one of the receive queues for further processing by
the node’s main components (application logic). These are symbolized by a
requester block (e.g., a processor) and a responder block (e.g., main memory).
In case the packet is destined for another node, it is forwarded towards the
outgoing link.

If, during the arrival of a packet, the local node is inserting a packet from
a transmit queue onto the output link, the arriving packet must be buffered
in order not to be lost. Storage for this purpose is called the bypass FIFO. A
node is only allowed to inject one of its own packets onto the outgoing link
whenever it has detected the bypass FIFO to be empty. Thus, the bypass
FIFO must be designed to hold one packet of maximum size. As soon as the
output link becomes available again, the bypass FIFO is emptied.

Incoming idle symbols are consumed whenever the node sends packets
of its own. The buffer saved idle serves to store the arriving control and
allocation information. Successive idles are merged into this buffer according
to the fairness requirements of the allocation protocols. Idles are produced
from this buffer whenever the receiver strips off a packet for the local node.

In general, the SCI node interface maintains two pairs of queues, serving as
buffers until transmission bandwidth becomes available for outbound packets
or until inbound packets can be processed by the node, respectively. SCI
specifies separate queue storage for requests and responses. This is a simple
and effective mechanism for eliminating a common cause of deadlock, by
allowing responses to complete without regard for request congestion. The
completion of responses eventually frees resources so that requests can be
handled, ensuring forward progress.

A request or respond send packet needs to be held in its transmit queue
until the corresponding echo arrives. When the echo arrives, the stripper
signals this to the transmit queue. Depending on the type of the echo, the
send packet is either discarded from the output queue (done echo) or needs to
be re-sent (retry echo). Time-outs are used to deal with send packets whose
echoes are overdue.

Error handling. SCI provides several features on the hardware and proto-
col levels to detect and isolate errors. Among them are: the CRC code and
its calculation in hardware; hardware time-outs to detect damaged or lost
packets; error status code fields in some packet types; the time of death that
may be associated with a packet; distributed error logging according to the
CSR Architecture; and the concept of CRC “stomping”. The latter feature
means that the CRC code of a packet is modified in a recognizable way if a
problem during packet creation is encountered (and part of the packet is in
transit already); an example of such a packet is a request echo that, for la-
tency reasons, is generated during the receipt of a request send packet, which

1. The SCI Standard and Applications of SCI 19

eventually is detected to have an invalid CRC code. An error is to be logged
whenever a packet is stomped which allows to isolate the source of the error.

Ringlets are required to have a so-called “scrubber” node which monitors
ringlet activity and is responsible for network-maintenance functions, e.g.,
deleting corrupted or stale packets and idle symbols, handling packets with
addressing errors, and circulating ring-maintenance information. A single
scrubber node is identified and activated automatically during system in-
itialization.

These features mainly contribute to detection, containment, and logging
of errors. It is beyond the scope of the standard to specify how to handle and
recover from errors. Software is expected to deal with these issues; see, e.g.,
Chapters 9 and 10.

1.3.2 Cache Coherence Layer

The cache coherence layer provides concepts and hardware protocols that
allow processors to cache remote memory blocks while still maintaining co-
herence among multiple copies of the memory contents. Since an SCI network
no longer has a central resource (i.e., a memory bus) that can be snooped
by all attached processors to effect coherence actions, distributed directory-
based solutions to the cache coherence problem had to be devised.

The resulting coherence protocols are quite complex. However, their im-
plementation is optional only, not impairing system performance when they
are not implemented or not being used. Further, within the cache coherence
protocols, there are different sets of interoperable protocols: the minimal set,
the typical set, and the full set. The implementor will choose one according
to a cost-versus-performance trade-off.

The coherence protocols basically operate according to the multiple
readers–single writer sharing model and use the write-invalidation scheme;
no coherence model is prescribed by the standard.

At the core of the cache coherence protocols are the distributed sharing
lists shown in Figure 1.6. Each shared block of memory has an associated
distributed, doubly-linked sharing list of processors that hold a copy of the
block in their local caches. The memory controller and the participating pro-
cessors cooperatively and concurrently create and update a block’s sharing
list.

The coherence tags and related information required for coherence main-
tenance are depicted in Figure 1.6 as well. With the standard size of an SCI
memory/cache block (64 bytes), this results in only a few percent storage
overhead in the main memory and caches. The overhead is fixed, i.e., inde-
pendent of the system size, which is an important building block of the scala-
bility of the coherence protocols. Note that cache coherence can be enabled
or disabled on portions of the memory, typically on a per-page basis. Memory
blocks can therefore be cached in a coherent or non-coherent manner, or be
uncached at all.

20 H. Hellwagner

 M state Fwd ID

 PA PB PC PD

Processors

Caches

CPUsControl

RAM

Memory

Address offset
Mem ID C state

Data

Back ID Fwd ID

(64 bytes)

Data
(64 bytes)

16 bits3 bits 16 bits
16 bits
48 bits

16 bits
7 bits

64k nodes, 64-byte memory/cache blocks assumed
Non-coherent memory block

(~7% overhead)

(~4% overhead)

Cache-coherent memory block

Fig. 1.6. Sharing list and coherence tags of SCI cache coherence protocols

Each shared, coherent memory block has a 3-bit memory state field and a
16-bit forward pointer that holds the SCI node ID of the node at the head of
the sharing list. The cache entries contain a 7-bit cache state field, a backward
pointer and a forward pointer (node IDs) for list maintenance, and the full
address of the cached data block, consisting of the SCI node address of the
memory module, memory ID, and the address offset within that module.

It is beyond the scope of this introduction to describe in detail the states
and state transitions of the memory and cache blocks, the coherent tran-
sactions and the actions and issues involved with updating the sharing lists.
Only the basic principles are given in the sequel.

When a processor accesses a cacheable, coherent memory block, e.g., by
a coherent-read transaction, the memory controller updates the state of the
block and saves the address of the requesting processor in its forward pointer
field.

If no cached copies of the block exist at that time (i.e., the sharing list
is empty), the requester becomes the head of a new list; the memory ships
the data block and the requesting node initializes its backward pointer, cache
state, and address fields.

If a sharing list for the block already exists at the time of the request, the
requesting node will become head of the sharing list as follows. The memory
controller updates its memory state and the forward pointer to point to the
requester (the designated head); it returns the pointer to the current head
back to the requester. Note that the memory does not ship the data block to
the requester since it may have a stale copy of the data only. The requester
uses this information to update its coherence tags and pointers to become
the new head (provisionally); it further sends a transaction to the old head
to identify itself as the new head and, simultaneously, request the data block.

1. The SCI Standard and Applications of SCI 21

The old head updates its backward pointer, thereby degrading itself to a
regular list entry, modifies its cache state, and returns the (up-to-date) data
block from its cache to the requester. The requester finally loads the data
into its cache and definitively establishes itself as the new list head.

When a processor requires write access to a shared data block, it first
makes itself the new head of the block’s sharing list, since only the head of the
list has write permission. It then deletes all other entries down the list in order
to obtain an exclusive copy of the block; in other words, all other processors
have to discard their copies of the block from their caches. Depending on when
the node at the head of the list is actually permitted to modify the data,
different coherence models can be realized; under a sequential consistency
regime [24], the node would have to wait until purging the rest of the list is
completed, while a more relaxed consistency model would allow the head to
proceed before completion of the deletion process.

Notice that the list insertion sequence described above involves three
nodes, two transactions with responses (requester ⇀↽ memory and reque-
ster ⇀↽ old head), and transitory states to prepend the requesting node to
the sharing list. Furthermore, other nodes may concurrently request access to
the same memory block and must be added to the block’s sharing list as well;
the order of the list insertions is defined by the arrival times of the requests
at the memory controller.

Despite the distributed nature of the protocol, both in terms of space and
time, and the concurrency issues involved, list insertions (and deletions as
well) must appear atomically. This requirement is further exacerbated by the
fact that transactions (or subactions thereof) may fail, potentially leaving
nodes or sharing lists in inconsistent states unless provisions for recovery are
defined. The SCI coherence protocols use implicit conditional atomic transac-
tions, like compare&swap, and never require any part of the directory struc-
ture to be locked, in contrast to the usual software protocols for maintaining
a coherence directory.

While the above discussion disclosed only a small part of coherence main-
tenance actions, it should have become clear that the designers of SCI had
to deal with many difficult and subtle correctness and robustness problems
pertaining to the cache coherence protocols. This explains the complexity of
the coherence specification. Simulations of the specification (given by the C
code) have greatly helped in designing and debugging the protocols. Despite
the well-devised protocols and the C code, implementation of SCI cache co-
herence, and especially interfacing it to typical processor coherence schemes,
remains a major challenge, though; see, e.g., Section 1.4.2.

The more advanced coherence protocol sets introduce optional optimiza-
tions for important sharing or access conditions. A good example is pairwise
sharing where, e.g., one producer and one consumer share a data block; in this
case, data may be transferred directly from the producer’s cache to the consu-
mer’s cache, without manipulating the sharing list on each modification and

22 H. Hellwagner

without involving memory. A further example is queued-on-lock-bit (QOLB)
synchronization which provides FIFO access to an exclusive resource; the
sharing list structure is exploited to hand over the resource without needless
communication.

1.3.3 Extensions

A number of projects have been started to develop standards that extend
or support SCI in a compatible way. The rationale for these projects was
mainly to specify issues and mechanisms that were regarded to be important,
but could not be covered by the base standard anymore, or that could be
postponed until the basic concepts were finished.

Some of these projects have successfully produced approved standards,
among them:

– Low Voltage Differential Signals (LVDS) for SCI (IEEE Std 1596.3-1996)
[27] that defines low-voltage differential signals (250 mV swing) and signal
encodings for data paths that are 4, 8, 32, 64, or 128 bits wide; and

– Shared-Data Formats Optimized for SCI (IEEE Std 1596.5-1993) [28] which
defines formats for data transfers among heterogeneous computing systems
in a distributed environment based on SCI.

The nearly completed standards project Parallel Links for SCI (IEEE
P1596.8) specifies the cables and connectors that have become favored by
SCI users. Another successful standardization effort seems to be the SCI
Physical Layer API project (IEEE P1596.9) which specifies a general-purpose
shared-memory hardware abstraction layer designed for SCI (but usable on
other shared-memory systems as well). This upcoming standard describes
functionality required to set up and run DSM systems with little overhead;
an in-depth discussion is given in Chapter 10.

A standardization project that has been active for a long time is the at-
tempt to specify Cache Optimizations for Large Numbers of Processors using
SCI, most often called KiloProcessor Extensions (IEEE P1596.2). This pro-
ject has been motivated by the observation that, due to the linear structure
of the sharing lists, SCI cache coherence actions will exhibit poor perfor-
mance when a large number (perhaps thousands) of nodes share a single
memory/cache block. Further, congestion can arise in the network or at the
memory controller when many nodes concurrently access a given data block.
The KiloProcessor Extensions address this deficiency by providing tree-like
sharing structures compatible with the linear sharing lists of SCI, and by
supporting more efficient mechanisms for distribution of widely shared data
and for purging copies, e.g., by using write-update mechanisms and combin-
able operations when possible. The aim is to reduce data-access latencies to
an order logarithmic in the number of participating processors rather than
linear. A description of the concepts under discussion can be accessed at [35].

1. The SCI Standard and Applications of SCI 23

A highly promising extension of the SCI standard was the High Speed
Memory Interface (SyncLink) standardization effort (IEEE P1596.7-199X),
until recently driven by SLDRAM, Inc., a non-profit corporation sponsored
by most of the DRAM manufacturers. The SyncLink project specified a high-
bandwidth, synchronous-link interface optimized for interchanging data bet-
ween a memory controller and DRAM chips. The mechanisms are described
in a draft standard [29]. Although the technology did work, the companies
supporting SLDRAM have withdrawn recently. The reasons and the future
prospects of the technology are briefly addressed in Chapter 27.

1.4 Applications of SCI

SCI was originally conceived as a shared-memory interconnect and a first
implementation of such a network emerged in 1994 (in the HP/Convex Ex-
emplar SPP multiprocessor). However, SCI’s flexibility and performance po-
tential also for other applications, e.g., as a system area network, was soon
realized and leveraged by industry. This section introduces several of these
“classical” applications of SCI and provides examples of commercial systems
exploiting SCI technology. Upcoming applications and more recent develop-
ments, e.g., SyncLink [29] and SerialPlus [30], are covered in Chapter 27.

1.4.1 System Area Network for Clusters

Compute clusters, i.e., networks of commodity workstations or PCs, are be-
coming ever more important as cost-effective parallel and distributed com-
puting facilities. An SCI system area network can provide high-performance
communication capabilities for such a cluster. In this application, the SCI
interconnect is attached to the I/O bus of the nodes (e.g., PCI) by a pe-
ripheral adapter card, very similar to a LAN; see Figure 1.7. In contrast
to a LAN though (and most other system area networks as well), the SCI
cluster network, by virtue of the common SCI address space and associated
transactions, provides hardware-based, physical distributed shared memory.
Figure 1.7 shows a high-level view of the DSM. An SCI cluster thus is more
tightly coupled than a LAN-based cluster, exhibiting the characteristics of a
NUMA (non-uniform memory access) parallel machine.

The SCI adapter cards, together with the SCI driver software, establish
the DSM as depicted in Figure 1.8. (This description pertains to the solutions
taken by the Dolphin SBus-SCI and PCI-SCI adapter cards; see Chapter 3.)
A node that is willing to share memory with other nodes (e.g., A), creates
shared memory segments in its physical memory and exports them to the SCI
network (i.e., SCI address space). Other nodes (e.g., B) import these DSM
segments into their I/O address space. Using on-board address translation
tables (ATTs), the SCI adapters maintain the mappings between their local

24 H. Hellwagner

SCI global
adress space

SCI interconnect

NodeMemory image

 P+C

I/O bridge

 M

I/O bus

Memory bus

SCI adapter SCI links

Node architecture

Fig. 1.7. SCI cluster model

I/O addresses and the global SCI addresses. Processes on the nodes (e.g.,
i and j) may further map DSM segments into their virtual address spaces.
The latter mappings are conventionally being maintained by the processors’
MMUs.

Virtual

ATT

MMU
Physical / I/O

SCI physical address space

address spaces

MAP

EXPORT

MAP

IMPORT

Local memory segment
Mapped, remote

Node A, process i Node B, process j

address spaces

memory segment

Fig. 1.8. Address spaces and address translations in SCI clusters

Once the mappings have been set up, internode communication may be
performed by the participating processes at user level, by simple CPU load
and store operations into DSM segments mapped from remote memories. The
SCI adapters translate I/O bus transactions that result from such memory
accesses into SCI transactions, and vice versa, and perform them on behalf
of the requesting processor. Thus, remote memory accesses are both transpa-
rent to the requesting processes and do not need intervention by the operating
system. In other words, no protocol stack is involved in remote memory ac-
cesses, resulting in low communication latencies even for user-level software.

Currently there is only one commercial implementation of such an SCI
cluster network, the SBus-SCI and PCI-SCI adapter cards (and associated
switches) offered by Dolphin Interconnect Solutions; Chapter 3 describes the
adapter cards in detail. These cluster products are used by other companies
to build key-turn cluster platforms; examples are Sun Microsystems, offering

1. The SCI Standard and Applications of SCI 25

high-performance, high-availability server clusters [10], and Scali Computers
and Siemens providing clusters for parallel computing based on MPI (see
Chapters 8 and 14 as well as [37]). The research and development projects
and products described in this book are to a large extent based on Dolphin’s
SCI cluster technology.

In addition, there are two research implementations of PCI-SCI adapter
cards, one developed at Technische Universität München and described in
Chapter 4, the other one developed at CERN as a prototype to investigate
SCI’s feasibility and performance for demanding data acquisition systems in
high-energy physics [2].

The description of an SCI cluster interconnect given above does not ad-
dress many of the low-level problems and functionality that the implemen-
tation has to cover. For instance, issues like the translation of 32-bit node
addresses to 64-bit SCI addresses and vice versa, the choice of the shared
segment size, error detection and handling, high-performance data transfers
between node hardware and SCI adapter, and the design and implementa-
tion of low-level software (SCI drivers) represent a spectrum of research and
development problems. Parts II and IV of this book describe these problems
and corresponding solutions in some detail. In addition, there is a wide de-
sign space for SCI interconnection networks which is explored by some of the
chapters in Part III.

As an example of specific functionality and characteristics of SCI cluster
hardware, consider Dolphin’s recent PCI-SCI adapter cards. There are two
ways to transfer data to and from the SCI network. The first method works
as described above: a node’s CPU actively reads data from (writes data to)
a remote memory using load (store) operations into a DSM address window
mapped from the remote node; this can be fully done on user level, resulting
in round-trip latencies as low as 4–5 μs, but occupying the CPU for mo-
ving the data. The second method involves a direct memory access (DMA)
engine on the SCI adapter that copies the data into and out of the node’s
memory; while this approach relieves the CPU, it has higher startup costs
since the SCI driver software has to be involved to set up the DMA transfer.
The SCI adapters provide several features optimizing the performance of the
data transfers into and out of the node, among them using PCI burst opera-
tions, combining consecutive small SCI transactions addressing a contiguous
memory region into a larger transaction, and prefetching. Under ideal cir-
cumstances (see Chapter 2), throughput of more than 80 MByte/s into and
out of a node can be achieved, limited by the memory and I/O architecture
of the node. The SCI interface chips and links can provide a bandwidth of
500 MByte/s.

An important property of such SCI cluster interconnect adapters is worth
pointing out here. Since an SCI cluster adapter attaches to the I/O bus
of a node, it cannot directly observe, and participate in, the traffic on the
memory bus of the node. This therefore precludes caching and coherence

26 H. Hellwagner

maintenance of memory regions mapped to the SCI address space. In other
words, remote memory contents are basically treated as non-cacheable and
are always accessed remotely. Current SCI cluster interconnect hardware does
not implement cache coherence capabilities therefore. Note that this property
raises a performance concern: remote accesses (round-trip operations such as
reads) must be used judiciously since they are still an order of magnitude
more expensive than local memory accesses.

The basic approach to deal with the latter problem is to avoid remote
operations that are inherently round-trip, i.e., reads, as far as possible. Rat-
her, remote writes are used which are typically buffered by the SCI adapter
and therefore, from the point of view of the processor issuing the write, ex-
perience latencies in the range of local accesses, several times faster than
remote read operations. In Part V of the book, several chapters describe how
considerations like this influence the design and implementation of efficient
message-passing libraries on top of SCI.

Several chapters in Part VI deal with how to overcome the limitations
of non-coherent SCI cluster hardware, in particular for the implementation
of shared-memory and shared-object programming models. Techniques from
software DSM systems, e.g., replication and software coherence maintenance
techniques, are applied to provide a more convenient abstraction, e.g., a com-
mon virtual address space spanning all the nodes in the SCI cluster.

1.4.2 Memory Interconnect for Cache-Coherent Multiprocessors

The use of SCI as a cache-coherent memory interconnect allows nodes to be
even more tightly coupled than in a non-coherent cluster. This application
requires SCI to be attached to the memory bus of a node, as shown in Fi-
gure 1.9. At this attachment point, SCI can participate in and “export”, if
necessary, the memory and cache coherence traffic on the bus and make the
node’s memory visible and accessible to other nodes. The nodes’ memory ad-
dress ranges (and the address mappings of processes) can be laid out to span
a global (virtual) address space, giving processes transparent and coherent
access to memory anywhere in the system. Typically, this approach is adop-
ted to connect multiple bus-based commodity SMPs to form a large-scale,
cache-coherent (CC) shared-memory system, often termed a CC-NUMA ma-
chine.

There are three notable examples of SCI-based CC-NUMA machines: the
HP/Convex Exemplar series, now in its second generation [6][40], the Sequent
NUMA-Q multiprocessor [32][7], and the Data General AViiON scalable ser-
vers [5]. The latter two systems comprise bus-based SMP nodes with Intel pro-
cessors, while the Exemplar uses HP PA-RISC processors and a non-blocking
crossbar switch within the nodes. The inter-node memory interconnects are
proprietary implementations of the SCI standard, with specific adaptations
and optimizations incorporated to ease implementation and integration with
the node architecture and to foster overall performance.

1. The SCI Standard and Applications of SCI 27

SCI

 P P P P+C

 M I/O
SCI

 P P P P+C

 M I/O
SCI

 P P P P+C

 M I/O
SCI

P+C P+C P+C P+C

 M I/O
System bus

SCI interconnect

Fig. 1.9. SCI-based CC-NUMA multiprocessor model

The major challenge in building a CC-NUMA machine is to bridge the
cache coherence mechanisms on the intra-node interconnect (e.g., the SMP
bus running a snooping protocol) and the inter-node network (SCI). Since
the Sequent NUMA-Q machine is well documented, it is used as a case study
to illustrate the essential issues in building such a bridge and making the
protocols interact correctly. A block diagram of the adapter board coupling
the node bus and the SCI network is given in Figure 1.10; Sequent’s SCI
implementation is called IQ-Link [33].

Node bus

interface

Node bus

SCI in

Directory

controller

Interconnect
controller

(DataPump)

SCI out

Remote cache
data

(SDRAM)

Remote cache
tags

(SRAM)

Fast, local
directory
(SRAM)

Remote cache
tags

(SDRAM)

Local
directory

(SDRAM)

IQ-Link board bus

DataPump bus

18 18

Address / control

Address / control

Data

Data

Bus side
snooping tags

Network
side tags

Fig. 1.10. Block diagram of Sequent’s IQ-Link board

28 H. Hellwagner

The NUMA-Q machine interconnects commodity bus-based SMP nodes
by a ring structure, with typically four Intel Pentium Pro or Xeon processors
per node. Every processor in the system has a common view of the system-
wide memory and I/O address space. The IQ-Link board plugs into the node
bus and participates in the standard MESI bus snooping protocol on behalf
of remote nodes.

The essential building block of the interface is the remote cache. This is
a large (32 MByte in first-generation systems [32]), expandable, 4-way set-
associative cache, maintaining copies of blocks that are fetched from remote
memories and representing the node to the rest of the system. The remote ca-
che is kept coherent with local processor caches by means of the bus-snooping
protocol, and with processor caches on remote nodes and remote memories
by SCI’s distributed directory protocol. The SCI directory protocol only ope-
rates on the remote cache; it is unaware of the local processor caches. Vice
versa, the local caches are not aware of other nodes; they are supplied with
remote data from the remote cache by virtue of the snooping protocol.

The block size of the remote cache is 64 bytes. The remote cache tags carry
information as shown in principle in Figure 1.6. The implementation deviates
from the standard, though. Forward and backward pointers are only 6 bits
wide (allowing 64 nodes in a first-generation system); only an address tag of
13 bits is held, rather than a full 48-bit address offset. Notice that the remote
cache tags are duplicated so that the two protocols may operate concurrently
on the remote cache. Since only the SCI protocol is aware of other nodes, only
the network-side copy of the coherence tags need to have pointers to other
nodes; the bus-side tags only contain address and state information. The bus-
side tags must be accessible at bus speed and are therefore implemented in
SRAMs.

The local directory maintains information about the state of the blocks
that have their home in the local memory; see the memory tags in Figure 1.6.
Again, the implementation differs from the standard, providing a 2-bit me-
mory state and a 6-bit list head pointer only. The local directory tags are
duplicated as well and again need not contain pointers to other nodes on the
bus side.

The node bus interface is an agent that snoops the node bus and manages
the bus-side tags as well as the remote cache data arrays. When the bus inter-
face controller detects that a bus request to a remote memory can be satisfied
by the remote cache on the IQ-Link board, it supplies the requested block on
the bus, with a latency close to that of a local memory access. Accesses that
cannot be satisfied locally are forwarded to the directory controller. Further,
the bus interface forwards incoming requests that access data, change state,
or invalidate blocks, to the node bus on behalf of the directory controller.
The bus interface can handle multiple outstanding requests and operate on
multiple incoming requests.

1. The SCI Standard and Applications of SCI 29

The directory controller manages the network-side tags and executes the
SCI coherence protocol. In first-generation systems, this component is im-
plemented as a programmable protocol processor. The reason behind this
decision is to avoid the risks and costs associated with a hardware implemen-
tation of the complex SCI cache coherence protocols; a firmware implementa-
tion is more easily debugged and optimized than hardware. Clearly, this does
have performance impacts, as indicated below. The protocol processor can
handle up to 12 protocol transactions and one interrupt transaction simul-
taneously by invoking a firmware “task” for each operation and supporting
fast hardware task switch. Special logic for bit-field processing is available.

The interconnect controller is an SCI interface as depicted in Figure 1.5,
implementing the physical and logical layer SCI protocols. The Vitesse Data-
Pump chip is employed for NUMA-Q machines, driving 1 GByte/s, 18-bit
wide SCI links.

Several problems arise due to two cache coherence protocols interacting
in the machine [7]. An obvious problem is the different cache line size on the
node bus (32 bytes) and on SCI (64 bytes). Some limitations of the Pentium
Pro bus (in first-generation systems) become difficult to work around when
long-latency operations appear. For example, since the bus expects in-order
responses to requests, a memory access that must be satisfied remotely must
be signaled to the bus as delayed by the IQ-Link bus interface controller.
When the reply comes back eventually, the bus interface must place it on
the bus and complete the deferred transaction. A delayed reply does not
automatically update main memory, requiring special actions by the IQ-Link
interface in case a locally allocated block is concerned. Furthermore, when
two read-exclusive requests appear on the bus back-to-back, the second one is
aborted by the bus and must be retried later on, rather than being buffered to
implement a reply more efficiently. Subtle issues also arise with serialization
of concurrent remote and local accesses to a memory block. This is done in
SCI at the home memory of the block. When the home is an SMP node,
the bus protocol must be involved on the home node to update the states
of local copies of the block on remote accesses. In fact, the bus becomes the
serialization point rather than the IQ-Link agent.

Performance characteristics of the NUMA-Q machine are given in [7].
Initial systems can sustain 30 MByte/s data transfer rate in each direction
through the IQ-Link board. Remote memory access latencies are about 3 μs
minimum and up to 9 μs under heavy load; more than 60% of these re-
mote latencies are typically spent traversing the IQ-Link boards. Optimized
microcode and hardware assist in the directory controller were identified as
promising techniques for reducing these latencies. Nevertheless, the NUMA-Q
machine delivers good performance on the commercial workloads it is desi-
gned to handle [32].

30 H. Hellwagner

1.4.3 I/O Subsystem Interconnect

SCI can be used to connect one or more I/O subsystems to a computing
system in novel ways. The shared SCI address space can include the I/O
nodes which then are enabled to directly transfer data between the peripheral
devices (in most cases, disks) and the compute nodes’ memories using DMA;
software needs not be involved in the actual transfer. Remote peripheral
devices in a cluster, for instance, thus can become accessible like local devices,
resulting in an I/O model similar to SMPs; remote interrupt capability can
also be provided via SCI. High bandwidth and low latency, in addition to the
direct remote memory access capability, make SCI an interesting candidate
for an I/O network.

There are currently two commercial implementations of SCI-based I/O sy-
stem networks. One is the GigaRing channel from SGI/Cray [36], the other
one the external I/O subsystem interconnect of the Siemens RM600 Enter-
prise Servers, based on Dolphin’s cluster technology [38].

The SGI/Cray GigaRing channel is a high-speed I/O network using point-
to-point links organized as two counter-rotating rings. It is used to inter-
connect peripheral controllers, network bridges, and SGI/Cray supercom-
puters in a variety of configurations. For example, a number of I/O nodes
attached to a single GigaRing can form the I/O subsystem of an SGI/Cray
computing system. One or multiple GigaRing channels with peripheral devi-
ces can be shared by several, even heterogeneous SGI/Cray systems, e.g., a
T90 vector machine and a T3E massively parallel processor. The GigaRing
therefore represents a common I/O system interconnect for the various types
of SGI/Cray computers.

The GigaRing channel heavily borrows from the SCI concepts and proto-
cols, but deviates from the standard in many respects. Unused features have
been discarded and new ones added to meet the requirements of a high-speed
I/O channel.

The physical layer of the GigaRing is implemented by the proprietary
GigaRing node chip. This chip is basically a simplified SCI node interface,
but with 32-bit links in both directions and a 64-bit interface to the client
(compute or I/O node). The chip and the wide links provide more than 1
GByte/s bandwidth per direction.

The logical layer uses SCI’s ring access, bandwidth allocation, and queue
reservation protocols with minor modifications. However, the packet types
are tailored specifically to the requirements of I/O, providing transactions
for small-message transfers, DMA operations, and maintenance and control.
Packet formats differ significantly from the standard, with 32-bit symbols,
16-byte headers, up to 256 bytes of payload, and a 4-byte trailer. GigaRing
also provides mechanisms for end-to-end congestion control, an area which is
not covered by the SCI standard. Obviously, the cache coherence protocol is
not implemented on GigaRing.

1. The SCI Standard and Applications of SCI 31

The two counter-rotating rings provide for increased availability: a broken
ring can be disabled (ring masking), and the two rings can be appropriately
cross-connected to isolate a broken node, resulting in one intact ring (ring fol-
ding). Disabling and reconfiguration can be effected by maintenance packets
sent on the GigaRing channel.

Siemens provides an external I/O expansion for the RM600 Enterprise
Servers, using Dolphin’s PCI-SCI cluster components. SCI rings can be used
to couple multiple PCI controllers such that they appear as one large PCI
bus with more than 100 PCI slots. SCI can also be used to directly couple
nodes in a cluster configuration.

1.4.4 Large-Scale Data Acquisition System

A special form of an I/O system is a data acquisition system. The most chal-
lenging data acquisition tasks exist in high-energy physics applications, e.g.,
particle detectors or nuclear fusion experiments. As an example, consider the
ATLAS experiment at the Large Hadron Collider (LHC), now under construc-
tion at CERN. It is expected that merely the second-level data acquisition and
real-time selection system will comprise about 2000 data sources and 1000
processing nodes. These will have to be connected by a high-performance
network that must be able to sustain a throughput of several GByte/s. See
Chapter 23 for a detailed explanation of the structure and requirements of
this data acquisition system.

It is not surprising, therefore, that researcher have investigated SCI as the
basis for these interconnects for many years. CERN, together with associa-
ted institutions, have designed and demonstrated SCI components, network
structures, and software in various projects. Early research is documented in
[2], and a current project to build an SCI prototype system is described in
Chapter 23. Another contribution in this book, Chapter 6, studies topologies
and performance characteristics of SCI networks for plasma fusion devices,
currently using simulation as the main tool.

1.5 Related Communication Networks and Concepts

Besides SCI, a number of related communication networks and concepts
have been proposed for building clusters or tightly-coupled multiprocessors
(NUMA or CC-NUMA systems, respectively). For the sake of brevity, only
the most significant differences between these related interconnects and the
SCI standard and SCI implementations are pointed out in the sequel.

Myricom’s Myrinet [1] is a high-speed system area and local area network
that has its origins in the interconnect technology of a massively parallel
machine. Network interface cards attaching to workstations’ I/O buses, high-
speed links, switches, and a wealth of software, predominantly optimized

32 H. Hellwagner

message-passing libraries, are available to facilitate the construction of high-
performance compute clusters. In contrast to SCI, a shared address space
across the nodes in a cluster is not provided by the technology. However, the
adapter card hosts a programmable processor, which allows specific commu-
nication mechanisms to be implemented, among them abstractions akin to
DSM [11]. Chapter 2 describes Myrinet in more detail and investigates its
performance by several communication benchmarks.

Other cluster interconnects supporting high-bandwidth, low-latency mes-
sage-passing communication include ParaStation [43] and ATOLL [4]. PA-
PERS is an interconnect technology focussing on fast aggregate communi-
cation and computation, e.g., barrier synchronizations and global reduction
operations [21]. The Gigabyte System Network (GSN) is an implementation
of the ANSI standard developed under the name HIPPI-6400; it is currently
being offered by SGI for highest-throughput (close to 800 MByte/s) cluster
computing and as a storage area network [39].

The Compaq/Digital Memory Channel (MC) [14][15] network is concep-
tually similar to SCI in that it provides a hardware-based, non-coherent phy-
sical DSM in a cluster of workstations or SMPs; low communication latencies
and overheads are of primary concern as well. However, the MC uses the
reflective memory concept which mirrors write operations to a memory in
other, connected memories. The nodes’ memories can be connected to each
other by address mappings similar to SCI, with page-level granularity. The
network adapters attach to the I/O bus and can be accessed from user level,
as in SCI. Only writes to remote memories are facilitated, though, no read
accesses. The most important difference to SCI is that the shared address
space of MC is provided by a separate device, the MC Hub, which imposes
a strict limit on the number of nodes that can be attached. MC provides
in-order delivery of writes, flow control in hardware, and more sophisticated
error-detection and reliability features than SCI.

The SHRIMP multicomputer [3] introduced the notion of Virtual Memory
Mapped Communication (VMMC). The concept is similar to SCI DSM in
that it allows applications to transfer data directly between two virtual me-
mory address spaces over the network. The basis are virtual memory-mapped
network interfaces and import-export mappings similar to SCI. Two trans-
fer strategies are supported: deliberate update, which is an explicit transfer
(send) of data, and automatic update, which reflects operations on expor-
ted local memory segments in the remote memory (by hardware means). A
number of communication libraries have been implemented exploiting the ad-
vantages of VMMC, most importantly user-level access to the network and
the opportunity to perform zero-copy data transfers [8]. In contrast to SCI,
SHRIMP does not provide a cluster-wide shared address space. The first im-
plementation was based on a proprietary Intel routing backplane as used in
the Paragon multiprocessor; the second implementation adapts Myrinet to
support the VMMC concept [11].

1. The SCI Standard and Applications of SCI 33

ServerNet, developed by Compaq/Tandem [22][23], is a flexible system
area network that can support communication among processors (by memory-
to-memory data transfers), I/O traffic between processors and peripheral
devices, and even between I/O controllers. The ServerNet interconnect has
interfaces to processors and associated memories, and to peripheral buses,
with the goal to unify inter-processor and I/O connectivity. Processors and
memories can be connected to two redundant, multi-stage interconnect fa-
brics. Similar to SCI, ServerNet supports both read and write transactions
directed towards remote memories or I/O nodes in order to pull or push
data across the network without software intervention at the remote node;
remote interrupts are supported as well. The network hardware provides deli-
very and ordering guarantees as well as fault detection and isolation features
at various architectural levels. ServerNet is a proprietary implementation,
originally designed to build high-throughput, reliable I/O systems [23] and
fault-tolerant clusters. More recently, however, ServerNet-II was proposed as
a native implementation of the Virtual Interface (VI) Architecture standard
[12], targeted also towards high-performance compute clusters for scientific
applications [19].

The Virtual Interface (VI) Architecture industry standard [12] summari-
zes many of the concepts and approaches developed in earlier projects, like
U-Net [42] or SHRIMP [3], for high-throughput and low-latency communi-
cation in clusters. VI Architecture specifies cluster communication concepts
and a network interface architecture in an open, implementation-independent
fashion. Notable concepts are: virtualization of the network interface to user
processes; organization of send and receive queues and descriptors; protected,
user-level access to the network; registration and use of portions of the vir-
tual memory for communication; virtual-to-physical address translation for
these memory regions, bypassing the operating system; avoidance of inter-
mediate data copies as well as of interrupts and context switches, in order to
minimize communication latency and CPU overheads; and remote memory
accesses without involving software on the remote node. It is expected that
these concepts will have a significant influence on future products designed
for fast cluster communication.

As to scalable cache-coherent multiprocessors, the SGI Origin 2000 [31]
seems to be the only commercial alternative to the SCI-based CC-NUMA
machines mentioned in Section 1.4.2. The Origin 2000 is an advanced, opti-
mized server machine with origins in the Stanford DASH project. The nodes
in the Origin are equipped with two MIPS processor which are connected to
each other, to local memory, and to I/O and network interfaces by a single
hub chip. Up to 512 nodes can be interconnected in a hypercube-like topo-
logy. Both the memory in the system and the I/O address space are globally
addressable. Cache coherence is maintained by a bit-vector directory scheme
where up to 64 bits per memory block keep track of where copies of the block
exist. The bit vector can be adapted to identify a single node per bit (full

34 H. Hellwagner

bit vector) or, for systems larger than 128 processors, a group of processors
(coarse bit vector). The directory memory of a node is associated with its
local memory and grows proportionally as the latter is extended. The hard-
ware and the operating system have mechanisms to count the references to
memory pages and migrate the page to the busiest requester, if this promises
to reduce the average memory access latency.

S3.mp was a technology development project by Sun [34] that aimed
at connecting off-the-shelf workstations (SparcStations) into a large-scale,
cache-coherent multiprocessor. The project developed a memory controller
that attaches to the Mbus of a SparcStation, handles accesses to local and
remote memories, and executes the cache coherence protocol by two microco-
ded protocol engines. S3.mp uses an invalidation-based protocol which keeps
track of nodes sharing a memory block using singly-linked lists. The second
major contribution of the project was the interconnection network, compri-
sing an interconnect controller with an integrated arbitrary topology router
and high-speed serial fiber-optic links. Unlike the SCI-based CC-NUMA mul-
tiprocessors which use special packaging, S3.mp nodes were anticipated to be
spatially distributed (up to 200 m) and to be connected in arbitrary topolo-
gies.

Finally, the Wisconsin Wind Tunnel Project [20] pursues in-depth rese-
arch on the design trade-offs for cost-effective DSM parallel machines, taking
further many of the issues that SCI addresses. Research areas include net-
work interface design, cooperation of hardware and software to manage the
DSM, combining shared memory and message passing for parallel computa-
tion, and the use of system-wide prediction and speculation techniques, e.g.,
to accelerate coherence actions.

1.6 Concluding Remarks

SCI is an interconnect standard that specifies leading-edge high-speed net-
working and distributed shared memory (DSM) technology. Although the
concepts and protocols are well devised and were published as an open spe-
cification in the early 1990s already, SCI has not lived up to its promise of
becoming an “open distributed bus”. Chapter 27 presents an insider’s view
on the obstacles to rapid and wide-spread acceptance by industry.

SCI was, however, rather quietly adopted by several companies that reco-
gnized its superior concepts and protocols as well as its potential of high
performance, but had no interest in implementing and providing SCI as
an open interconnect. A number of proprietary implementations and pro-
ducts therefore appeared over the years, ranging from high-performance clu-
ster interconnects, to shared-memory multiprocessor networks with cache
coherence implemented in hardware, and high-speed I/O subsystem inter-
connects. In particular, the CC-NUMA machines based on SCI technology

1. The SCI Standard and Applications of SCI 35

from HP/Convex, Sequent, and Data General turned out to be quite succes-
sful.

Adoption of workstation clusters using an SCI interconnect (and its
DSM), is however slower than expected, despite the superior performance
characteristics of SCI cluster networks available today. The reasons may well
be that for many years there has been only one serious vendor of SCI ad-
apters and switches, Dolphin Interconnect Solutions, and that progress on
developing software for the efficient use of these clusters has been slow. This
even holds for message-passing libraries and more so for shared-memory pro-
gramming paradigms that may take advantage of SCI’s DSM. This book
is intended to contribute to faster and wider acceptance of SCI clusters in
academia and industry by summarizing the state of the art of SCI cluster
computing, pointing out achievements and remaining obstacles as an aid for
potential users.

SCI’s development and influence is not finished yet. For example, recent
interconnect standard projects like SyncLink, a high-speed memory interface,
and Serial Express (now tentatively named SerialPlus), an extension to the
SerialBus (IEEE 1394) interconnect, directly emerged from SCI or are heavily
influenced by SCI concepts. SCI also plays a role in the debate on future I/O
systems (NGIO versus FutureIO). These current developments and future
directions are explored in more detail in Chapter27.

References

1. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, W.-K. Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE
Micro, pages 29–36, Feb. 1995.

2. A. Bogaerts et al. RD 24 Status Report: Application of the Scalable Coherent
Interface to Data Acquisition at LHC. Oct. 1996.
http://nicewww.cern.ch/˜hmuller/˜HMULLER/docs/report96.pdf.

3. M. A. Blumrich, C. Dubnicki, E. W. Felten, K. Li, M. R. Mesarina. Virtual-
Memory-Mapped Network Interfaces. IEEE Micro, pages 21–28, Feb. 1995.

4. U. Bruening, L. Schaelicke. ATOLL: A High-Performance Communication De-
vice for Parallel Systems. Proc. Advances in Parallel and Distributed Computing.
Shanghai, 1997.

5. R. Clark. SCI Interconnect Chipset and Adapter: Building Large Scale Enter-
prise Servers with Pentium II Xeon SHV Nodes. White Paper. Data General
Corp. 1999.
http://www.dg.com/about/html/sci interconnect chipset and a.html.

6. Convex Computer Corp. Convex Exemplar Architecture. Technical Document
DHW-014. Convex Computer Corp., Nov. 1994.

7. D. E. Culler, J P. Singh, with A. Gupta. Parallel Computer Architecture: A
Hardware-Software Approach. Morgan Kaufmann 1998.

8. S. N. Damianakis, A. Bilas, C. Dubnicki, E. W. Felten. Client-Server Computing
on SHRIMP. IEEE Micro, pages 8–18, Jan./Feb. 1997.

9. Dolphin Interconnect Solutions. Link Controller LC-2 Specification. Data Sheet,
Dolphin 1997.

36 H. Hellwagner

10. Dolphin Interconnect Solutions and Sun Microsystems. Sun Enterprise Cluster
Architecture. Application Note, Dolphin 1998.
http://www.dolphinics.com/dolphin2/interconnect/applications/Sun Cluster Arc.htm.

11. C. Dubnicki, A. Bilas, Y. Chen, S. N. Damianakis, K. Li. SHRIMP Project
Update: Myrinet Communication. IEEE Micro, pages 50–51, Jan./Feb. 1998.

12. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry,
A. M. Merritt, E. Gronke, C. Dodd. The Virtual Interface Architecture. IEEE
Micro, pages 66–76, March/April 1998.

13. D. R. Engebretsen, D. M. Kuchta, R. C. Booth, J. D. Crow, W. G. Nation.
Parallel Fiber-Optic SCI Links. IEEE Micro, pages 20–26, Feb. 1996.

14. R. B. Gillett. Memory Channel Network for PCI. IEEE Micro, pages 12–18,
Feb. 1996.

15. R. B. Gillett, R. Kaufmann. Using the Memory Channel Network. IEEE Micro,
pages 19–25, Jan./Feb. 1997.

16. D. B. Gustavson. The Scalable Coherent Interface and Related Standards Pro-
jects. IEEE Micro, pages 10–22, Feb. 1992.

17. D. B. Gustavson. The Many Dimensions of Scalability. Proc. COMPCON
Spring’94, 1994.

18. D. B. Gustavson, Q. Li. The Scalable Coherent Interface (SCI). IEEE Com-
munications Magazine, pages 52–63, Aug. 1996.

19. A. Heirich, D. Garcia, M. Knowles, R. Horst. ServerNet-II: a Reliable Inter-
connect for Scalable High Performance Cluster Computing. White Paper. Com-
paq Computer Corporation, Tandem Division. Sept. 1998.
http://www.servernet.com/flat/public/brfs wps/snetii/snetii.pdf.

20. M. D. Hill, J. R. Larus, D. A. Wood. The Wisconsin Wind Tunnel Project: An
Annotated Bibliography. Technical Report. Computer Sciences Dept., Univ. of
Wisconsin-Madison. Aug. 1999. http://www.cs.wisc.edu/˜wwt.

21. R. R. Hoare, H. G. Dietz. A Case for Aggregate Networks. Proc.
IPPS/SPDP’98. IEEE CS Press 1998.

22. R. W. Horst. TNet: A Reliable System Area Network. IEEE Micro, pages 1–9,
Feb. 1995.

23. R. W. Horst, D. Garcia. ServerNet SAN I/O Architecture. Proc. Hot Inter-
connects V, Aug. 1997.

24. K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill 1993.

25. IEEE Std 1212-1991. IEEE Standard Control and Status Register (CSR) Ar-
chitecture for Microcomputer Buses. The Institute of Electrical and Electronics
Engineers, Inc., 1991.

26. IEEE Std 1596-1992. IEEE Standard for Scalable Coherent Interface (SCI).
The Institute of Electrical and Electronics Engineers, Inc., 1993.

27. IEEE Std 1596.3-1996. IEEE Standard for Low Voltage Differential Signals
(LVDS) for Scalable Coherent Interface (SCI). The Institute of Electrical and
Electronics Engineers, Inc., 1996.

28. IEEE Std 1596.5-1993. IEEE Standard for Shared-Data Formats Optimized for
Scalable Coherent Interface (SCI) Processors. The Institute of Electrical and
Electronics Engineers, Inc., 1993.

29. IEEE Std 1596.7-199X Draft 0.99. Draft Standard for A High-Speed Memory
Interface (SyncLink). 1999.
http://www.SLDRAM.com/FAQ/SyncLinkD0.99.pdf.

30. D. V. James, D. B. Gustavson, B. Fleischer. Serial Express: A High-
Performance Workstation Interconnect. IEEE Micro, pages 54–65, May–June
1998.

1. The SCI Standard and Applications of SCI 37

31. J. Laudon, D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.
Proc. 24th Int’l. Symp. on Computer Architecture. ACM Press 1997.

32. T. Lovett, R. Clapp. STiNG: A CC-NUMA Computer System for the Com-
mercial Marketplace. Proc. 23rd Int’l. Symp. on Computer Architecture. ACM
Press 1996.

33. T. D. Lovett, R. M. Clapp, R. J. Safranek. NUMA-Q: An SCI-based Enterprise
Server. White Paper. Sequent Computer Systems, Inc., 1996.
http://www.sequent.com/products/highend srv/numa sci.pdf.

34. A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin, B. Radke, S. Vis-
hin. The S3.mp Scalable Shared Memory Multiprocessor. Proc. Int’l. Conf. on
Parallel Processing. 1995.

35. SCIzzL: the Scalable Coherent Interface and Serial Express Users, Developers,
and Manufacturers Association. http://www.SCIzzL.com.

36. S. Scott. The GigaRing Channel. IEEE Micro, pages 27–34, Feb. 1996.
37. Siemens AG. High Performance Computing – HPCLINE.

http://www.siemens.de/computer/hpc/en/hpcline/index.htm.
38. Siemens AG. RM600 E. Model E30, E70. Data Sheet. Siemens, Sept. 1998.

http://manuals.mchp.siemens.de/servers/rm/rm us/rm pdf/rm600e37.pdf
39. Silicon Graphics Computer Systems. Gigabyte System Network. Data Sheet.

SGI, Nov. 1998. http://www.sgi.com/Products/PDF/2287.pdf.
40. R. Thekkath, A. P. Singh, J. P. Singh, S. John, J. L. Hennessy. An Application-

driven Evaluation of the Convex SPP-1200. Proc. 11th Int’l. Parallel Processing
Symposium. IEEE Computer Society Press 1997.

41. Vitesse Semiconductor Corp. Compliant Link Controller 1 GByte/sec SCI
VSC7201a. Data Sheet, Vitesse 1996.

42. T. von Eicken, A. Basu, V. Buch, W. Vogels. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. Proc. 15th ACM Symposium
on Operating System Principles. ACM Press 1995.

43. T. M. Warschko, J. M. Blum, W. F. Tichy. ParaStation: Efficient Parallel Com-
puting by Clustering Workstations: Design and Evaluation. Journal of Systems
Architecture. Vol. 44 (3–4) (Special Issue on Cluster Computing), pages 241–
260, Dec. 1997.

2. A Comparison of Three Gigabit
Technologies:
SCI, Myrinet and SGI/Cray T3D

Christian Kurmann, Thomas Stricker

Laboratory for Computer Systems, Swiss Institute of Technology (ETH),
CH-8092 Zürich, Switzerland
email: {kurmann, tomstr}@inf.ethz.ch
http://www.cs.inf.ethz.ch/CoPs

2.1 Introduction

In 1993 Cray Research shipped its first T3D Massively Parallel Processor
(MPP) and set high standards for Gigabit/s SAN (System Area Network)
interconnects of microprocessor based MPP systems sustaining 1 Gigabit/s
per link in many common applications. Today, in 1999, the communication
speed is still at one Gigabit/s, but major advances in technology managed
to drastically lower costs and to bring such interconnects to the mainstream
market of PCI based commodity personal computers. Two products based
on two completely different technologies are readily available: the Scalable
Coherent Interface (SCI) implementation by Dolphin Interconnect Solutions
and a Myrinet implementation by Myricom Inc. Both networking techno-
logies include cabling for System Area Networking (SAN) and Local Area
Networking (LAN) distances and adapter cards that connect to the standard
I/O bus of a high end PC. Both technologies can incorporate crossbar swit-
ches to extend point to point links into an entire network fabric. Myrinet
links are strictly point to point while SCI links can be rings of multiple nodes
that are possibly connected to a switch for expansion. In the mean time two
Internet technologies emerging from the inter-networking world also arrived
at Gigabit speeds—ATM (Asynchronous Transfer Mode) and Gigabit Ether-
net. Based on the specification and their history those two alternatives are
related to the evaluated technologies Myrinet and SCI.

For a systematic evaluation and comparison of the different Gigabit inter-
connects a common architectural denominator is required. We propose to look
for common grounds among the interconnect technologies at three different le-
vels: first for a simple and highly optimized remote load/store operation using
all the knowledge about the hardware details (DIRECT DEPOSIT), second
for an optimized standard message passing library (MPI/PVM) providing a
standard API for specialized parallel programs and third for a connection
oriented LAN networking protocol (TCP/IP) catering to the needs of many
high level services and middle-ware packages used in distributed computing.
We are convinced that a better performance for TCP/IP LAN emulation in

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 39-68, 1999
© Springer-Verlag Berlin Heidelberg 1999

40 C. Kurmann, T. Stricker

a Gigabit networking environment can make Clusters of PC’s (CoPs) a very
attractive platform for a large number of PC users. Several high level proto-
col stacks, middle-ware packages and applications based on TCP/IP sockets
are widely available and in most environments it would not be economical
to adapt this large and diverse software base to some interconnect specific
network interfaces. At a later date the studies can be extended to higher-level
services like e.g. NFS and AFS remote file systems, high performance Web
servers or SQL servers for distributed databases.

Most previous performance studies remained limited to the measurement
and the discussion of maximum transfer bandwidth, minimal ping-pong la-
tency or simply assess the performance of an installed cluster of PCs with a
single application. Unfortunately such simplistic studies are still the state of
the art in comparing different network technologies. We claim that such stu-
dies are inadequate, since most scientific application codes for parallel com-
puters or clusters of workstations have at least some common requirements
for computation and communication that could be used for a more general
performance characterization. Most parallel and distributed applications of
interest deal with large quantities of distributed data in either regular or ir-
regular fashion. While some benefit from a regular layout of their data and
store their data in distributed arrays, other applications use fine grain ob-
ject stores as their distributed data structures. In both cases we encounter a
few characteristic communication patterns when arrays or object collections
are redistributed or distributed objects are migrated. The regular commu-
nication pattern in array transpose primitives is a good generic test case
to characterize the strengths and weaknesses of the communication and me-
mory systems. We therefore extend the benchmarks to cover some data types
beyond contiguous blocks and incorporate the processing of strided transfers
as a more representative memory access pattern for realistic applications.

2.2 Levels of Comparison

The two principal functions of a high performance communication system
in parallel and distributed systems are to move data and to provide expli-
cit synchronization for consistency. This can be done at different abstraction
levels with more or less support by the underlying hardware. A common
denominator for an evaluation and the comparison of different Gigabit inter-
connects can be determined by selecting a few common data transfers and by
examining the ways those operations can be performed based on different pro-
gramming models and based on different degrees of support from hardware
and software. While at the lowest level the performance results are highly
transparent and can easily be related to the specifications of the hardware,
the performance figures at the higher levels correspond most closely to what
an application can reasonably expect from several installed systems with dif-

2. A Comparison of SCI, Myrinet, and SGI/Cray 41

ferent hardware, different software and different application programming
interfaces. Therefore a comparison at three different levels is proposed:

– Direct Deposit: Direct deposit refers to simple, unsynchronized remote
load/store operations of varying block sizes and data access patterns. The
performance at this level is expected to be closest to the actual hardware
performance.

– Message Passing (MPI/PVM): MPI or PVM represent the perfor-
mance of a highly optimized standard message passing library. Carefully
coded parallel applications are expected to see the performance measured
at this level.

– Protocol Emulation (TCP/IP): An emulation of the connection orien-
ted TCP/IP protocol used in the Internet. Users that substitute a Gigabit/s
network for a conventional LAN will see a performance comparable to this
benchmark.

Direct Deposit with its simple “no fuzz” remote store semantics permits
to determine a maximal fraction of the hardware performance that is sustain-
able by the lowest level driver software for each interconnect technology. For
contiguous blocks this figure corresponds to the best published transfer rate.
However for non-contiguous blocks the measured rates expose the capability
or inability of the hardware to handle fine grained data in communication
operations. If the hardware is unable to execute fine grained transfers effi-
ciently, aggregating copies must be used.

At a somewhat higher level the transfer modes of message passing com-
munication with full buffering capability required by a clean implementation
of postal semantics are explored. Some common “zero copy” shortcuts typi-
cally restrict the semantics of the messaging API to some extent, but speed
up the communication in latency and bandwidth. This route is explored as
a contrast to the fully functional messaging libraries. MPI or PVM compa-
tible communication libraries are used for the test without checking much
for API completeness or standard compliance—which ever one performs best
is used. For the final investigation of network performance delivered in the
classic, connection oriented protocol setting, a “TCP/IP over LAN” protocol
emulation is selected as a test case.

In the second and third “high level” test scenarios the transfer capability
for contiguous blocks satisfies the needs of the data representations in the two
APIs, but additional copies may occur due to the tricky postal semantics of
send and receive calls or due to the requirement for retransmission to achieve
reliable connections over a non-reliable interconnect.

2.2.1 Direct Deposit

Conventional message passing programs use the same mechanism (i.e. messa-
ges) for control and data transfers. The deposit model allows a clean separa-
tion of control and data messages in the implementation [16]. In the deposit

42 C. Kurmann, T. Stricker

model only the sender actively participates in the data transfer, “dropping”
the data directly into the address space of the receiver process, without active
participation of the receiver process or any other action causing synchroniza-
tion. In addition to transferring contiguous blocks the deposit model allows
to copy fine grained data directly out of the user data structure at the sen-
der into the user data structure at the receiver, involving complicated access
patterns like indexing or strides. The conceptual difference between the Di-
rect Deposit and the traditional NUMA model is that the deposit promotes
and assumes aggregation or pipelining of data accesses despite a possibly
non-contiguous access pattern that could occur when communication data is
placed directly to its final destination in user space.

The deposit transfers can be implemented in software, e.g., on top of an
Active Message layer, where a handler is invoked on the receiver to move the
data to its final destination. However, our understanding of optimum hard-
ware support for Direct Deposit suggests that a general control transfer in the
form of an RPC should be avoided and that a previously asserted synchro-
nization point is sufficient to move the data. Furthermore the functionality
of the message handler is fixed and the deposit operation at the receiver only
affects the memory system of the receiver.

2.2.2 Message Passing (MPI/PVM)

The MPI and PVM message passing standard are examples of the classi-
cal postal model1. Both the sender and receiver participate in a message
exchange. The sender performs a send operation and the receiver issues a
receive operation. These operations can be invoked in either order, blocking
or non-blocking. That is, messages can be sent at any time without wait-
ing for the receiver. This enhancement in functionality forces the system to
buffer the data until the receiver accepts it. An optimization in several im-
plementations eliminates one of the additional copies in the receiver node by
delaying the data transfer until the receive call is invoked. Once that happens,
the receive pulls the data from the sender. This optimization can reduce the
number of copies but not eliminate them entirely since in the cases that the
receiver is not ready the sender must hold the data and copy instead for pro-
per storage management. Generalized postal semantics in message passing
always requires buffering in some situations. Only once the programmer ag-
rees to live with certain restrictions on the proper use of the send and receive
calls the libraries can eliminate all copies and provide a so called “zero copy”
messaging.

Figure 2.1 shows two possible scenarios of restricted and full postal mes-
sage passing semantics. The left chart shows a case in which the data can be

1 Unlike PVM the MPI messaging standard does not require a clean implementa-
tion of fully buffered postal semantics, but most advanced implementations do
provide it in practice.

44 C. Kurmann, T. Stricker

2.2.3 Protocol Emulation (TCP/IP)

Connection oriented LAN network protocols are particularly important for
Clusters of PCs and crucial to their commercial viability. Most protocol stacks
as well as the ubiquitous socket API are provided by the default operating
system of PCs or workstations and many software packages using these pro-
tocols and the socket interface are already available. The goal of the CoPs
project at ETH is not limited to deploying ever cheaper GigaFlops for appli-
cations in computational chemistry, computational biology or computational
astronomy, but intends to widen the range of parallelizable applications from
scientific codes into databases and Internet servers. Especially for commercial
distributed databases or existing object store middle-ware systems it would
not be viable to change the standard communication protocols to restricted
high speed messaging. For network file systems on clusters of PCs, like e.g.
NFS or Sprite, both UDP/IP and TCP/IP services must be provided. With
a highly optimized IP communication facility through a Gigabit interconnect
a Cluster of PCs can provide high compute performance at an optimal price
for a much larger number of programs than a dedicated workstation cluster
can do. Traditional clusters of workstations like e.g. an IBM SP/2 offer high
communication speeds exclusively to parallel programs that are recoded for
message passing communication.

The TCP/IP protocol suite is primarily designed for Internet communi-
cation and not particularly well suited for messaging passing communication
in parallel systems. However with the underlying IP messaging mechanism it
can still offer some fast unreliable, connection-less network services by frag-
menting messages into IP datagrams and delivering them according to the IP
address scheme. Transport protocols such as UDP and TCP allow to extend
communication to different processes of the same end system by a universal
port concept called sockets. TCP further enables full duplex communication
over a reliable data stream by implementing flow control and retransmis-
sion with a sliding windows protocol. The latter functions of TCP are less
important in a cluster interconnect (with a proper setup of a high speed inter-
connect there should be no loss in the switches) but its API is very common
if not ubiquitous.

Because the protocol is implemented without specific knowledge of the
used hardware, assuming an unreliable network service like Ethernet or In-
ternet respectively, the performance of IP will rarely match the performance
of optimized MPI and Direct Deposit protocols. Especially the latency for
TCP data transfers is much higher due to connection setup, which might be
acceptable or unacceptable to certain applications. The maximum bandwidth
of many implementations is lowered by a factor of two or three through the
buffering copies as they might be required for retransmission recovery after
a possible communication error in a presumably unreliable network.

2. A Comparison of SCI, Myrinet, and SGI/Cray 45

2.3 Gigabit Network Technologies

For many years, the rapid advances in processor technology and computer ar-
chitecture have consistently outperformed the improvements of interconnect
technology in terms of speed, cost and widespread availability. Over more
than one decade Ethernet with 10 MBit/s remained the only main stream
networking alternative.

Two of the most promising new networking technologies for interconnec-
ting compute nodes at Gigabit speeds in a high-performance Cluster of PCs
are Dolphin’s implementation of Scalable Coherent Interface (SCI) [6] and
Myricom’s Myrinet [3]. Of course this list is by no means complete. There
are a few older interconnect technologies that are no longer marketed like
e.g. Digital’s Memory Channel [7]. There are also other technologies that are
newly announced or even shipping, and some we were just unable to evaluate
(yet) [17] [9].

Since the mode of operation of an SCI interface connected to a PC is so
similar to the hardware of a processor node in the SGI/Cray T3D system
we provide a short description of the communication technology of the latter
system as a reference for mechanisms, services and performance. The Cray
T3D is an old (1992) MPP supercomputing platform, that reached the end
of its life cycle in the mean time, but its interconnect is still faster (and still
a lot more expensive) than many of the current interconnect solutions in
the market of PC clusters and many of the modern, scalable cache coherent
NUMA systems.

Fig. 2.2. Block diagrams of different network interface architectures. A Pentium
Pro PC with either Dolphin SCI Interconnect or Myricom Myrinet PCI adapter
and an SGI/Cray T3D node with DEC Alpha Processor and deposit-fetch engine.

A simplified schematic of the network interface circuits used by the Dol-
phin PCI card, by the Myrinet LANai card and by the T3D parallel processing

46 C. Kurmann, T. Stricker

node design is drawn in Figure 2.2. The principal difference between the old
T3D and the newer commodity interconnects for PCs lies in a tight integra-
tion of the network interface with the microprocessor that was still possible
for a dedicated MPP machine like the T3D. Standardization issues forced the
PC based system to work with an indirect access to the network interface and
the remote memory through a widely used I/O bus in the nodes of a parallel
system.2 In the latter designs a “motherboard” chip-set includes a memory
controller and an I/O bus bridge. This auxiliary chip-set of a PC assumes the
role of a main internal switching hub in the entire system. All I/O operations
including those of Gigabit networking must be performed through the auxi-
liary chip-set and the PCI-bus, which is a data path with lower bandwidth
and higher overhead than the primary host and memory bus. I/O buses are
geared towards long block transfers of peripheral controllers. They are there-
fore prone to high startup overheads and are lacking the signals necessary for
full shared memory coherency. With the advent of games and virtual reality,
the bandwidth requirements for graphics has outgrown the PCI bus and the
PC industry reacted with a separate graphics port (AGP) for the newer PCs.
Unfortunately networking seems less important to the mass market and has
not yet been accommodated with a special port by those motherboard chip-
sets. The Cray T3D network uses a direct access to the main memory of the
node via a highly optimized deposit/fetch engine that has its own data path
to and from the banked DRAM memory system. In addition to that sup-
port circuitry a so-called “annex” routes any communication from the caches
(built into the microprocessors) directly to the network via a local-to-global
address translator, to a few special FIFOs and finally out to the interconnect
wires.

2.3.1 The Intel 80686 Hardware Platform

The experimental platform for benchmarking the two commodity Gigabit
networks is given by the framework of the CoPs project. The chosen node
architecture is based on either a single processor or a twin processor Intel
Pentium Pro system running at 200 MHz. The memory system design of this
PC platform is based on a two-level hierarchy of caches (L1, L2) that are eit-
her integrated on the processor silicon or on a separate die packaged together
with the processor. The L1 cache consists of separate 8 kByte for data and
instructions. The instruction cache is 4-way set-associative, the data cache is
dual ported, non-blocking, 2-way set-associative supporting one load and one
store operation per cycle, the cache lines are 32 bytes wide. The L2 cache is a
256 kByte set-associative, non-blocking unified instruction/data cache, which
2 The first parallel machine that connected its high speed interconnects through

a limiting I/O bus, a micro-channel, was the IBM SP/1 in 1992. Its developers
correctly anticipated that the immediate compatibility of the interconnect with
the latest and fastest processor generation was more important to the success of
the SP/1 product than the interconnect speed.

2. A Comparison of SCI, Myrinet, and SGI/Cray 47

is closely coupled with a dedicated 64-bit full clock-speed backside bus. An
Intel 440FX Motherboard chip-set gives the processor access to 64 MByte
of SDRAM memory and the 32 bit PCI bus. The processor, the Data Bus
Accelerator (DBX) and the PCI Bridge are connected by a proprietary 64-bit
66 MHz host bus (approx. 512 MByte/s). The external PCI bus is 32 bits
wide and runs at 33 MHz (132 MByte/s) [10].

2.3.2 Myricom Myrinet Technology

The Myrinet technology is a SAN or LAN networking technology based on
networking principles previously used in massive parallel processors (MPPs)
[3]. Myrinet networks are built from cables that carry one or two full du-
plex 1.28 GBit/s channels connecting the host adapter and the switch port
point-to-point. Wormhole routing in the switches together with link level
flow control on the cable guarantees the proper delivery of every message de-
spite congestion. Retransmissions are not part of the concept and the packet
checksums are just for the detection of electrical errors. The 4, 8 or 16 port
switches of the Myrinet product line may be connected among each other
by one or multiple links permitting configuration in all known interconnect
topologies. Packets are of arbitrary length and therefore can encapsulate any
type of packet (i.e. Ethernet packets, IP packets, MPI messages) and there is
no MTU (maximal transfer unit) for the lowest signaling layer in Myrinet. In
the network, link-layer flow control guarantees integrity of the data transfers
at the expense of an increased potential of mutual blocking and deadlocks
in the switches, which can be addressed by clever routing schemes like e.g.
dimension order routing.

Fig. 2.3. Block diagram of the Myricom Myrinet Adapter.

A Myrinet host adapter (see Figure 2.3) contains a LANai chip with a
RISC processor core, several DMAs and the entire network interface integra-
ted in one VLSI chip. In addition to the LANai there are 512 kByte up to

48 C. Kurmann, T. Stricker

2 MByte of fast SRAM on the adapter card to store a customizable Myrinet
Control Program (MCP) and to act as staging memory for buffering packets.
Typical MCPs provide routing table management, gather operations, check-
summing, send operations, generation of control messages, receive operation,
validity checking, scatter operations and the generation of interrupts for the
receiving processor upon arrival of a message. Enhanced MCPs can provide
performance evaluation tools [5] or gang scheduling support [8]. The RISC
processor core is a 32-bit dual-context machine with 24 general purpose regi-
sters. One of the two contexts is interruptible by external events which causes
the processor to switch to the non-interruptible context. In addition to the
RISC processor core the LANai includes three DMA controllers. The LANai
can act as a bus master to gather data blocks from or scatter to the host me-
mory over the PCI bus. At the same time, the DMA engine can compute a
datagram checksum in its specialized logic unit for CRC (Cyclic Redundancy
Checks). The remaining two DMAs are specialized to transfer data between
the network FIFO queues and the staging memory on the card. All DMAs
can work in parallel which allows pipelined operation at full bandwidth. The
DMA can either be initialized by the MCP on the LANai or directly through
memory mapped special registers by the main processor.

2.3.3 Dolphin PCI-SCI Technology

Other than Myrinet, the Scalable Coherent Interface (SCI) technology was
conceived as an alternative to a processor bus using point-to-point inter-
connects (see Chapter 1).

We examined SCI adapters for the PCI bus of Dolphin Interconnect So-
lutions (Revision B and Revision D) [6] (presented in Chapter 3) which are
both universal main-stream versions of SCI host adapters without support
for full coherency.

2.3.4 The SGI/Cray T3D – A Reference Point

The SGI/Cray T3D node is an interesting example of an old style MPP node
architecture specifically designed for a high performance massively parallel
processor (MPP). Although the original design is already retired in the age
of low-cost PC clusters, it still sets the standards for a simple and fast com-
munication interface. The implementation is done in an expensive, bipolar
ECL gate array technology that fits the speed of the full custom CMOS in
the microprocessors almost perfectly and no compromises for cost or for stan-
dardization were taken. There was no commercial pressure to use a PCI bus
between the processor and the network interface in a custom MPP.

The processor board of a Cray T3D comprises a 150 MHz 64-bit DEC
Alpha microprocessor (21064), a local memory system, a memory mapped
communication port (“the annex”) to send remote stores to the network and

2. A Comparison of SCI, Myrinet, and SGI/Cray 49

a fetch/deposit engine to execute them at the remote site—see Figure 2.2 in
Section 2.3.

The memory of a T3D node is a simple memory system built from DRAM
chips without extensive support for interleaving and pipelined accesses. Un-
like DEC Alpha workstations, the node has no virtual memory and runs on
a slightly modified version of the DEC microprocessor without the functio-
nal units for paged virtual memory but with a few segment registers for a
low overhead virtual memory mapping of large memory regions instead. The
interface between the computation agent and the main memory is centered
around an 8 kByte primary cache and a write back queue (WBQ) which are
both standard in high performance microprocessors and integrated on-chip.
An external read-ahead circuitry (RDAL) can be turned on by the program-
mer at load-time to improve performance of contiguous load streams from
200 to 320 MByte/s. The local read bandwidth for non-contiguous double
word loads is at 55 MByte/s and the latency of a single, isolated load from
main memory around 150 ns. For writes, the default configuration of the ca-
che is write-around, and the automatic coalescing for subsequent writes is
cleverly derived from the regular operation of the write back queue in the
CMOS microprocessor.

The interface between the processor and communication system maps
some range of free physical address space to the physical memory of another
node in the system; the partner node must be selected as a communication
partner with a fixed overhead by modifying the appropriate registers in the
annex. The remote stores are a key strength of the T3D design, since once
a store operation is issued to the communication port, the communication
subsystem takes over the specified address and data, and sends a message out
to the receiver. Remote loads are handled in a similar way but they must be
pipelined with an external, 16-element FIFO queue for efficiency using the
prefetch instructions of the DEC Alpha Microprocessor. The queue requires
direct coding support by the programmer or compiler and is therefore rarely
used.

At the passive end of a transfer the fetch/deposit engine completes the
operation as a remote load/store on behalf of the user at another node. These
accesses happen without involvement of the processor at the receiver node
(i.e., there is no requirement to generate an interrupt). This circuitry can
store incoming data words directly into the user space of the processing ele-
ment, since both address and data are sent over the network. The on-chip
cache of the main processor can be invalidated line by line as the data are
stored into local memory, or it can be invalidated entirely when the program
reaches a synchronization point. The significant fixed cost for switching the
communication partner together with the limitation of only partially coherent
caches justifies our classification of the T3D as a highly advanced message
passing machine with support for fine grain remote stores.

50 C. Kurmann, T. Stricker

Transfers from the processor to the communication system can be per-
formed at a rate of approximately 125 MByte/s. In synthetic benchmarks
multiple nodes can perform remote stores of contiguous blocks of data into a
single node and push these transfers even higher, up to the full network speed
(160 MByte/s) [12] without even slowing down the memory accesses of the
local microprocessor significantly. In practical systems the number of network
nodes (and network interfaces) is only half the number of microprocessors (or
processing nodes). If just one of the two processors is communicating at a
time, the network can be accessed at up to 125 MByte/s, due to limitati-
ons in the processing node, but if both processors are communicating at full
speed each processor obtains about 75 MByte/s of bandwidth to access the
network. The packetization of remote loads and remote stores in the network
is very similar to SCI. Packets are between one and two dozen 16-bit flits.

2.3.5 ATM: QoS – But Still Short of a Gigabit/s

At its beginning the development of the ATM (Asynchronous Transfer Mode)
interconnect technology was driven by network computing. Some prominent
ATM vendors (e.g. Fore Systems) emerged from high speed network testbeds
developed for network computing (e.g. OC-3 at speeds of 155 MBit/s). The
general ATM technology with its short packet size and its advanced network
control architecture incorporated many new ideas for quality of service gu-
arantees and had excellent interoperability of components between different
vendors. Therefore it was suitable for WAN/MAN (Wide and Metropolitan
Area Network) networking services and remains the technology of choice when
it comes to pure networking applications. However in the mean time ATM
lost its competitiveness in the SAN/LAN (System and Local Area Networ-
king) environment by the delayed introduction and excessive cost of Gigabit
ATM interconnects. Several years after their announcement the next gene-
ration OC-12 (i.e. 622 MBit/s) host-adapter cards for PCs and line-adapter
cards for ATM switches are only affordable for network backbones or high
end servers – OC-24 (1.2 GBit/s) or even OC-48 (2.4 GBit/s) ATM links
would be needed to bring the technology up to a sustained Gigabit/s and
to make it competitive with SCI or Myrinet. In fall of 1998, a recent com-
mercial offer for a 16-node fully switched Gigabit/s interconnect priced an
OC-12 ATM solution almost a factor of three higher than the corresponding
solution based on Gigabit Ethernet.

2.3.6 Gigabit Ethernet – An Outlook

Gigabit Ethernet [14] is the latest speed extension of the ubiquitous Ethernet
technology. Its standard war recorded as the IEEE 802.3z in 1998. Ethernet
is successful for several reasons. The technology is simple and uncomplicated,
and this could potentially translate into high reliability and low maintenance

2. A Comparison of SCI, Myrinet, and SGI/Cray 51

cost as well as a low cost of entry. For high performance computing Gigabit
Ethernet has to overcome several limitations. Its switches are mostly store
and forward while the Myrinet switch is wormhole routed. The specified ma-
ximum latency is rather increasing than decreasing in advanced switching
products and is specified at 20 microseconds for the state-of-the-art switch
installed at our site. The 16-port switch backplane is specified to sustain 32
GBit/s switching capacity which will make it nearly impossible to bring the
switch to its bandwidth limit. The recently installed host adapter cards of
Gigabit Ethernet are PCI based—just like all commodity interconnects dis-
cussed in this chapter. During their first year on the market their costs fell
already well below the adapters for Myrinet and Dolphin SCI.

2.4 Transfer Modes

2.4.1 Overview

In our description of the possible transfer modes we focus on the perfor-
mance of moving just data and disregard any difference in amount of local
or global cache coherency that the different technologies can offer, since at
this point none of the three technologies can offer automatic fully coherent
shared memory to support a standardized shared memory programming (like
OpenMP) directly in hardware. The direct implementation of a programming
model will remain a privilege of either much less scalable or much more ex-
pensive systems like bus based SMPs or directory based CC-NUMAs. Also
the implication of different network interconnect topologies is a well resear-
ched topic and therefore we just assume that a sufficient number of switches is
used to provide full bisectional bandwidth for the machines under discussion
in this chapter, as this is the case in most smaller systems. It is also clear that
all data transfers to remote memory must be pipelined and aggregated into
large messages to achieve the full performance given in this report. The pure
ping-pong latency of a single word data transfer remains of little interest for
a comparison of the sustainable end-to-end throughput experienced by diffe-
rent application programs using different transfer modes and assuming that
all processors, co-processors and DMAs are working nicely together.

Until recently the maximum performance of the memory and the I/O
system was rarely achieved by the network interconnects. Therefore neither
the performance of the I/O bus designs nor the performance of the common
system software was optimized enough to work well with Gigabit networking.
Those two factors are the principal bottlenecks in today’s Clusters of PCs.

A further bottleneck is the lack of local memory system performance in
PCs. Memory system performance is not only important to computational
efficiency in applications with large datasets, but it is also the key to good per-
formance of inter-node transport of data. While high end MPP node designs

52 C. Kurmann, T. Stricker

can afford memory systems with special hooks for inter-node communica-
tion at Gigabit/s speeds, low end systems must rely entirely on mass market
memory systems and standard I/O interfaces (i.e. a PCI bus) for economic
reasons.

The main difference between the SCI and the Myrinet network adapters
are their default transfer modes and some alternate modes they can operate
in. Although the hardware mechanisms involved in transfers between main
memory, staging memory and network FIFO queues may be vastly different,
the purpose of all data transfers remains the same: to move data from the
user space of a sending process to the user space of a receiving process.
Most interconnect designs can perform this operation with close to peak
speed for large blocks of data and for the special semantics of a zero copy
messaging API. However this peak speed is not necessarily a good indicator
of the real transfer modes found in common applications. Our model requires
that a direct remote memory operation can also include some more complex
memory accesses at the sending end and the receiving end, e.g. deal with
strided stores. Thus the issues of data transfers can be explored in more
depth. A typical application for a complex data transfer operation would be
the boundary exchange of an iterative FEM solver working on large, space
partitioned, sparse matrices. Figures 2.4 - 2.9 illustrate two transfer options
for each of the interconnects discussed earlier. The first transfer mode is
mostly processor driven and utilizes the most direct path from memory to
the network FIFOs at the sender and from the network FIFOs at the receiver
to the memory, while the second mode is DMA driven. The second mode
makes a few additional copies on the way to the network interface but uses
DMAs to do them most efficiently in parallel to the regular work of the
processor nodes involved in communication. The naming for those different
mode of transfer is as follows:

Direct Deposit by the processor (direct mapped): The main proces-
sor pushes the data directly into the network FIFOs through regular store
operations addressed to a special segment of virtual memory, mapped direc-
tly to the network interface and through that port on to the memory of the
remote processor. Contrary to a common belief, the precise layout or format
of the assembly instructions to trigger this remote store or load operation
does not matter. It is well conceivable that a parallelizing compiler automa-
tically handles a remote store as two separate stores for address and data,
since, unless some magic hardware can deliver full coherency without speeds
penalty, the compilers or the programmers will have to know about the local
and remote nature of their data references for the sake of better performance
optimizations.

This Direct Deposit mode of operation is the native mode for the SCI
adapter and for the Cray T3D architectures which both have direct hard-
ware support for remote stores and loads. A Myrinet adapter can only map
the control and send registers as well as its local staging memory (SRAM)

2. A Comparison of SCI, Myrinet, and SGI/Cray 53

into the user address space of the application, but not the entire remote me-
mory segment it communicates to. Direct remote stores are impossible unless
the two dedicated MCPs (co-processors) at the sender and the receiver side
become involved in moving data. In principle a dedicated control program
for those co-processors could shadow the staging memories of the adapters,
transfer the data across the network and move the incoming data to the re-
mote memory at the receiving end, so an ensemble of SCI like remote store
operations can be emulated for large contiguous or strided blocks of data.
This technique does not work too well for one isolated store, but as we will
see in a later section, it performs adequately for an aggregation of multiple
stores, even with indices or strides involved.

Direct Deposit by the DMA: The application stores its data (and po-
tentially also the addresses) into a reserved, pinned address segment of local
memory instead of the mapped remote address space. Starting from there,
the DMA of an adapter can pull the data directly into the network FIFO
interface or store the received data from the network FIFOs into the host
memory respectively.

This mode of operation works very well for contiguous blocks of data.
The SCI interfaces in message passing mode can send blocks of the map-

ped memory using their DMAs. The DMA controller utilizes the most effi-
cient sequence of SCI transactions to achieve highest possible throughput.
The Myrinet adapter with its three DMAs on the LANai permits a similar
mode of operation. Furthermore there is a bit more flexibility with Myrinet
than there is with SCI, since the data can be gathered from small portions,
stored at the staging memory and sent directly to the packet interface. The
DMAs of Myrinet can be supervised and periodically restarted by the LANai
MCP.

Message Passing by the processor: In this mode the main processor of
the PC gathers the segmented data words from user space in memory and
stores it back to a contiguous buffer of local memory. From this segment
of mapped main memory the network card’s co-processor or alternatively a
network DMA will transfers the contiguous message into the FIFOs and onto
the network wires. On the receiver node the message is stored in a contiguous
buffer in local memory and unpacked by the main processor.

In this mode the message is processed by the main processor, by a network
processor or by a DMA to be finally transmitted into the network FIFO.
Measurements indicate that this is the best way of transferring scattered or
strided data with Myrinet and this mode therefore can be called the native
mode of Myrinet.

Message Passing by the DMA: Depending on the available hardware
support the buffer-packing/unpacking process can also be done by the DMA.
The main processor packs the destination store addresses along with the data
into a message. The adapter card fetches the prepared message from memory
by a DMA and pushes it into the network FIFO. On the receiver node the

54 C. Kurmann, T. Stricker

main processor or the network card’s message processor reads address and
data words and scatters the data via DMA transfers to a segment of main
memory. In the same manner the buffer-packing can be done by the DMA of
the network adapter provided that the addresses or the pattern of the data
words which have to be gathered are simple and known in advance.

The message is processed by a network processor and a DMA at both
the sending and the receiving ends. This mode of transferring data can be
used if the main processor must stay out of the communication process.
Measurements indicate that, depending on specific block sizes and access
patterns packing/unpacking by the main processor can be faster than gathe-
ring/scattering by the DMA.

2.4.2 “Native” and “Alternate” Transfer Modes in the Three
Architectures

To implement the remote memory system performance tests with their com-
plicated strided patterns we can either use the hardware support provided by
the communication adapter or the method of packing/unpacking by the main
processor. The latter choice always leads to an additional copy operation, but
avoids some inefficient single word transfers across the PCI bus. Due to its
I/O bus architecture bursts of contiguous data are much faster over the PCI
bus.

Myrinet: The Myricom Myrinet adapter with its own RISC processor and
its staging memory allows for different scenarios. Figures 2.4 and 2.5 show
two schematic flows of data, a direct deposit and a buffer packing/unpacking
operation. The LANai processor in the adapter of the receiver can be used
to unpack and scatter the data without any invocation of the main proces-
sor. Here the DMA between the adapter card and the main memory is the
bottleneck when small amounts of data (words) are transferred because the
PCI bus arbitration overhead dominates the performance of each transfer.
For these access patterns, the packing/unpacking by the main processor and
sending the contiguous packed data with a DMA transfer leads to a much
higher throughput.

SCI: Figures 2.6 and 2.7 show a schematic flow of data for the Dolphin PCI-
SCI Adapters. SCI supports a direct mapped mode which enables transparent
access to mapped remote memory segments. As the data is first stored in
stream buffers, this mode works perfectly well for contiguous blocks whereas
for some unfavorable access patterns, e.g. strided or indexed accesses, only
one stream buffer is used, and consequently, the performance drops below
10 percent of the maximum bandwidth. The performance can be increased
in the same way as for Myrinet if for strided and indexed accesses the main
processor unpacks the data after performing a fast contiguous transfer.

2. A Comparison of SCI, Myrinet, and SGI/Cray 55

Fig. 2.4. Schematic flow of data on Myrinet. A direct mapped mode for chained
transfers can be implemented using the SRAM and the LANai processor on the
adapter card. This is the alternate mode for Myrinet.

Fig. 2.5. Schematic flow of data on Myrinet with buffer-packing/-unpacking. This
is the best message passing mode for any data that must be packed and unpacked by
the main processor. It can be labeled as the native mode of operation for Myrinet.

Fig. 2.6. Schematic flow of data with SCI. SCI supports a direct mapped mode
which enables transparent access to mapped remote memory segments. This is the
native mode of SCI.

56 C. Kurmann, T. Stricker

Fig. 2.7. Schematic flow of data with SCI in message passing mode. The main
processor packs the data in the local memory and copies contiguous blocks to the
mapped remote memory. In addition contiguous transfers can be sped up by a
DMA mode which sends contiguous messages to mapped remote memory segments
similar to the Myrinet adapter. This is the alternate mode of operation for SCI.

T3D: The T3D offers hardware support to perform direct user-space to user-
space transfers for all communication patterns at full speed, contiguous and
strided and even irregular indexed (see Figures 2.8 and 2.9). This capability
potentially eliminates all buffer packing at the sender and unpacking at the
receiver even for the most complex access patterns. The Cray SHMEM libr-
ary (libsma.a) provides a thin layer to cover the hardware details of Direct
Deposit for bare bone contiguous transfers. A buffer packing message passing
style interface is provided by the Cray PVM or MPI libraries for a higher
level of messaging in system software. While both libraries contain primitives
for direct contiguous block transfers, both libraries fail to provide adequate
flexibility for transfers of strided and indexed data without prior copies in lo-
cal memory. However parallelizing compilers like the experimental CMU FX
compiler or the Cray production compiler CRAY CRAFT can program the
network interface directly to do strided and indexed transfers most efficiently
and hereby achieve best performance.

2.5 Performance Evaluation

It is important to keep in mind at which level the benchmark is performed
(at the lowest level of deposit or at the highest level of LAN emulation)
and which data path (mode of operation) is used to do the transfer. For
modes of operation that involve packing/unpacking operations of messages
into buffers, the local memory system performance is a very important factor
for communication performance. Unlike the simplistic McCalpin loops of the
STREAM benchmark [11], the Extended Copy Transfer (ECT) test captures
many aspects of a memory hierarchy, including the performance behavior for
accesses with temporal and spatial locality by varying working sets and strides
or true memory copies with a simultaneous load and store data stream[15].

2. A Comparison of SCI, Myrinet, and SGI/Cray 57

Fig. 2.8. Schematic flow of data on the Cray T3D. Direct transfers can be imple-
mented by mapping the entire remote memory into local address space (through
the annex). A special fetch/deposit circuitry handles incoming remote operations
without involvement of the processor. This is clearly the native mode of operation
for the Cray T3D.

Fig. 2.9. Schematic flow of data on the Cray T3D for the message passing mode.
The main processor packs the data in the local memory, copies it as a contiguous
block to remote memory and unpacks it again. This is an alternate mode of opera-
tion that behaves inferior on all access patterns.

58 C. Kurmann, T. Stricker

The strides are incorporated based on the fact that end-to-end transfers in
compiled parallel programs involve fine grain accesses, such as strided accesses
into arrays or a large number of indexed accesses to smaller blocks when
gathering/scattering data from/into distributed collections of objects. The
ECT method can be used for local and remote memory with full, partial or
no support for global cache coherence.

2.5.1 Performance of Local Memory Copy

A good characterization of an interconnect technology is obtained when ex-
amining the remote memory system performance figures for different access
patterns (strides) and a large working set. The measured copy performance
for the same copy operation entirely within the local memory system is inclu-
ded in Figures 2.10 - 2.12 just for an interesting comparison. Since this report
is only discussing remote deposit (leaving out remote fetch) all transfers in
the performance charts are done by contiguous loads from local memory
and strided stores to the same local or remote memory system. The inte-
resting performance numbers for local transfers in Figures 2.10 - 2.12 show
that the copy bandwidth of the memory system on the Pentium Pro PCs is
only 45 MByte/s and much less than the peak performance of modern in-
terconnects. Copying data in the same memory system with the processor is
therefore always a bottleneck and must be avoided at all cost when writing
software for fast communication.

2.5.2 Performance of Direct Transfers to Remote Memory

The performance of direct transfers is measured for contiguous blocks (stride
1) and for increasing strides (2-64). The first set of performance curves in
Figures 2.10 - 2.12 (filled circle) marks the performance of the most direct
transfers by remote store operations to the mapped remote memory or a
good emulation thereof. The second curve (hollow circle) marks the perfor-
mance of highly optimized buffer packing transfers. In this case the transfers
were optimized as far as possible. If the DMA was faster, then DMA was
used. The relationship between local and remote memory performance can
be understood by comparing the performance curves of local memory for
the corresponding copy operation to the direct and buffer-packing remote
performance curves (triangle).

Deposit on Myrinet: For Myrinet a uniform picture for strided data is
observed. The emulation of Direct Deposits for small blocks of data (double
words) works with a pipelined transmission of large data blocks with either
the LANai or the main processor unpacking the strides (see Figure 2.10).
The direct store by the DMA is very much affected by the size of the chunks
transferred by one DMA activation. The buffer packing mode with the main
processor seems to perform at about memory copy bandwidth whereas the

2. A Comparison of SCI, Myrinet, and SGI/Cray 59

Intel Pentium Pro (200 MHz) with Myrinet

▼

▼

▼
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

● ● ● ● ● ● ● ● ● ● ● ● ●

❍
❍

❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 12 16 24 32 48 64
0

10

20

30

40

50

60

70

80

90
Th

ro
ug

hp
ut

 (M
by

te
/s

)

Store Stride (1: contiguous 2-64: strided)

▼ local memory

●
remote memory,
direct

❍
remote memory,
DMA plus unpack

126●

Fig. 2.10. Measured throughput for the Myrinet host adapter using an emulation
of direct mapped and buffer packing transfers. As a reference the corresponding
performance curve of the local memory system is given (same contiguous loads /
same strided stores).

Intel Pentium Pro (200 MHz) with SCI Interconnect

▼

▼

▼
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

●

● ● ● ● ● ● ● ●
●

●

●
●

●

❍
❍

❍
❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 12 16 24 32 48 64
0

10

20

30

40

50

60

70

80

90

Th
ro

ug
hp

ut
 (M

by
te

/s
)

Store Stride (1: contiguous 2-64: strided)

▼ local memory

●
remote memory,
direct

❍
remote memory,
DMA plus unpack

● SCI Rev. D

SCI Rev. B

Fig. 2.11. Measured throughput for the Dolphin PCI-SCI host adapter using direct
mapped and buffer packing transfers. As a reference the performance of the local
memory system is given for the same copy operation (contiguous loads / strided
stores).

60 C. Kurmann, T. Stricker

▼ ▼

▼
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

●

●
●

● ● ● ● ● ● ● ● ● ● ●

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

1 2 3 4 5 6 7 8 12 16 24 32 48 64
0

20

40

60

80

100

120
Th

ro
ug

hp
ut

 (M
by

te
/s

)

Store Stride (1: contiguous 2-64: strided)

▼ local memory

● remote memory, direct

❍
remote memory,
unpack at receiver

Cray T3D: Copies to local and remote memory

Fig. 2.12. Measured throughput for the Cray T3D using direct mapped and buffer
packing transfers. As a reference the performance of the local memory system is
given for the same copy operation (contiguous loads / strided stores). Note that
two T3D nodes can exchange contiguous data faster than a single node can copy
it.

Transfers of different sized blocks (raw,contiguous)

●
●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

❍ ❍ ❍ ❍
❍

❍

❍

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

▼ ▼
▼

▼

▼

▼

▼

▼

▼

▼
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
 k

32
 k

65
 k

13
1

k
26

2
k

52
4

k
1

M

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (M

by
te

/s
)

Block Size [Byte]
● Dolphin SCI Rev. D

❍ Dolphin SCI Rev. B

▼ Myrinet

Fig. 2.13. Fastest transfers of different block sizes for Myrinet and SCI.

2. A Comparison of SCI, Myrinet, and SGI/Cray 61

direct DMA transfers suffer from the overhead of too many DMA initializa-
tions and too many PCI bus arbitrations. The buffer packing, native mode
can fully use the DMAs to boost the case of large contiguous blocks.

DMA transfers are very much affected by the block size. The performance
for different block sizes for Myrinet and SCI is compared in Figure 2.13. It
turns out that both adapters have the same problems with small blocks but
it should be noted that the second generation of “CluStar” SCI adapters per-
formed much better than the first release when it comes to startup overhead
for small transfers.

Deposit on SCI: With SCI interconnects reasonably good performance for
contiguous blocks can be observed in direct transfer mode (see Figure 2.11).
This is when the eight stream buffers work optimally. For strided data the
performance of remote stores on PCI collapses to well under 10 MByte/s and
appears to be unstable. The sloped curve from stride 2 to stride 8 can be
explained by the mechanics of the stream buffers. For transfers with stride
2 only one stream buffer appears to be used. The direct mapping of the
subsequent even word-aligned remote memory addresses to the same 64-byte
stream buffer must lead to a sequence of non-pipelined single word transfers.
The buffer is always sent directly with only 8 bytes of data and the next
value addressed to the same buffer has to wait until a returning acknowledge
releases the buffer again. Despite its apparent support for direct transfers of
single words in SCI, it turns out to be more efficient to pack and unpack a
communication buffer than to execute strided transfers directly. The resulting
transfer mode - performance tradeoff is similar to Myrinet.

Deposit on the Cray T3D: The Cray T3D offers (or more precisely offered
at its time) a remarkably different performance picture (see Figure 2.12). It
turns out that for a Cray T3D it is always best to execute a data transfer in
direct mode. Buffer packing includes copies and those never accelerate any
transfers regardless of their regularity. For contiguous blocks a direct copy to
remote memory is even faster than a local copy from and to memory. This is
not surprising since two memory systems, one at the sender side and one at
the receiver side, are involved in a single data transfer in the remote case. But
even without the advantage of using two memory systems for a copy transfer,
the remote copy remains strictly faster than the local one as proven in some
unpublished experiments that featured simultaneous send and receive actions
on the same node.

2.5.3 Performance of MPI/PVM Transfers

The performance of the higher level transfers indicates how well system pro-
grammers can work with the hardware. A full function standard message
passing library with buffering for true postal message passing and a redu-
ced zero copy library is used to determine the performance of MPI/PVM
transfers for reasons explained in Section 2.2.2. The following evaluations use

62 C. Kurmann, T. Stricker

two different tests exposing (a) the performance for libraries with full postal
functionality including buffering and (b) the performance for libraries with
reduced functionality based on zero-copy transfers.

MPI on Myrinet: On Myrinet the BIP-MPI package [13] is used to bench-
mark message passing performance. BIP (Basic Interface for Parallelism) is a
high performance library with a possibly simplified data transfer semantics.
The code was developed at the ENS (Ecole Normale Superieure) at Lyon,
France. Although this implementation might eventually fall somewhat short
in terms of completeness and compliance with the full MPI standard, it seems
to provide a stable API for all important functions of basic message passing.
BIP-MPI is a modified MPICH version using the lower messaging layers of
BIP to drive the Myrinet network hardware. The performance of BIP-MPI
(see Figure 2.14) matches the raw performance of 126 MByte/s for blocking
sends and receives. This performance figure is measured with large blocks
(> 1 MByte). Half of the peak performance can be reached with messages
of roughly 8 kByte in size. The performance results are summarized in Fi-
gure 2.17.

Myrinet: fastest MPI block transfers of different sizes

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●
●

● ● ●

❍ ❍ ❍ ❍ ❍
❍ ❍

❍
❍

❍
❍

❍
❍ ❍ ❍

❍ ❍ ❍ ❍

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
 k

32
 k

65
 k

13
1

k
26

2
k

52
4

k
1

M

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 [M

by
te

/s
]

Block Size [Byte]

●
restricted
semantics

❍
full postal
semantics

Fig. 2.14. Measured throughput of BIP-MPI transfers over Myrinet for restricted
and full postal semantics.

To determine the performance of message passing with the non-blocking
send and receive calls, the sends are posted before the corresponding recei-
ves. In this case MPICH enforces some buffering and the performance drops
to about the local memory copy. An optimized data path for small trans-
fers below 64 kByte uses the LANai staging memory for buffering, saves the
additional local memory copy and results in notably better performance. If
two sends are posted before the receive, the peak performance for buffered
transfers is measured at 32 kByte blocks, since two blocks have to be buffered
in the buffer pool on the adapter card.

2. A Comparison of SCI, Myrinet, and SGI/Cray 63

MPI on SCI: For the message passing tests with SCI a fully standardized
MPI version for the Solaris Operating System named ScaMPI is provided
by Scali Inc. [1]. The graphs in Figure 2.15 sketch a performance picture for
SCI that is quite similar to the one of Myrinet. The peak performance again
matches the raw performance at about 72 MByte/s for blocking sends and
receives measured with large blocks (> 1 MByte). Half of the peak perfor-
mance can be reached with messages of roughly 2 kByte size which fits to
the fact that SCI is capable of transferring small packets at full performance.
For the non-blocking calls the performance again drops to the local memory
copy bandwidth.

SCI: fastest MPI block transfers of different sizes

● ● ● ● ● ●
●

●

●

●

●
●

●

●
●

●

● ●
●

❍ ❍ ❍ ❍ ❍ ❍ ❍
❍

❍

❍
❍

❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
 k

32
 k

65
 k

13
1

k
26

2
k

52
4

k
1

M

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 [M

by
te

/s
]

Block Size [Byte]

●
restricted
semantics

❍
full postal
semantics

Fig. 2.15. Measured throughput of MPI transfers over an SCI interconnect for
restricted and full postal semantics.

MPI and PVM on the SGI/Cray T3D: For the Cray T3D the per-
formance measurements are carried out with PVM 3.0 instead of with the
MPI library. PVM 3.0 is a highly optimized, fully functional message passing
library supplied by the vendor upon delivery of their first T3D system in
Pittsburgh in the fall of 1993. A maximum of 30 MByte/s can be sustained
for large blocks (> 1 MByte) and half of the peak bandwidth is achieved with
messages as small as 2 kByte size.

Our team has no longer worked on the Cray T3Ds after the first Cray T3E
MPP was installed at the Pittsburgh Supercomputing Center in 1996. The-
refore our measured PVM results are complemented with the better results
of a later MPI implementation for the Cray T3D coded by the Edinburgh
Parallel Computing Center in cooperation with SGI/Cray Research (CRI) [4]
(see Figure 2.16). The EPCC MPI implements the full MPI specification and
was developed using the Cray SHMEM primitives for the T3D. The measured
performance corresponds to about the performance of BIP-MPI over Myrinet
with blocking calls. Blocking calls do not need any buffering whereas mea-
surements with non-blocking calls are slowed down by an additional copy in

64 C. Kurmann, T. Stricker

the local memory system. For some reason the blocking calls have a slightly
higher overhead. We cannot explain this because we collected published data
measured by other groups to draw this comparison.

Cray T3D: fastest MPI block transfers of different sizes

● ● ● ●
●

●
●

●

●

●

●
●

❍ ❍ ❍
❍

❍
❍ ❍ ❍

❍
❍

❍
❍

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
 k

32
 k

65
 k

13
1

k
26

2
k

52
4

k
1

M

0

20

40

60

80

100

120
Th

ro
ug

hp
ut

 [M
by

te
/s

]

Block Size [Byte]

●
restricted
semantics

❍
full postal
semantics

Fig. 2.16. Measured throughput of EPCC-MPI transfers for the T3D for restricted
and full postal semantics.

2.5.4 Performance of TCP/IP Transfers

For a more significant growth in market share for high end Clusters of PCs,
it is crucial to port traditional applications quickly and easily to the new
platform. Moving portable codes to a better platform is also important when
performance critical applications are moved from a Beowulf [2] class system
to a high-end cluster with a better interconnect. Such an upgrade in com-
munication performance can be done by substituting a conventional LAN
network (e.g. switched 100BaseT) by a Gigabit interconnect, especially in
the booming area of Internet content servers and for the important market of
distributed databases. Keeping the services and APIs stable and compatible
during upgrades is guaranteed by protocols like TCP/IP. In the TCP/IP
mode of operation the performance of a fully standardized protocol stack
is essential. Therefore the most standard and best IP emulation packages
available for each interconnect technology are examined (with the small ex-
ception of the T3D, where applications using IP did not make much sense at
its time).

IP on Myrinet: Myricom offers a fully compliant TCP/IP protocol stack
that transfers data at 20 MByte/s. BIP-TCP [13] improved this performance
by using the “zero copy” BIP interface so that about 40 MByte/s are reached.
The BIP implementors use the original Linux protocol stack and substituted

2. A Comparison of SCI, Myrinet, and SGI/Cray 65

the transfer mechanism using their BIP message passing system in the lower
layers.

IP on SCI: For the SCI Revision B cards under test we could only reproduce
13.2 MByte/s with a non-optimized NDIS driver provided by Dolphin Inter-
connect running under Microsoft Windows NT. We also tested a TCP/IP
emulation written by researchers at the PC2 at the University of Paderborn.
The code is quite similar to the BIP-TCP and also runs under Linux. Instead
of the BIP layer, mechanisms using remote mapped segments were used to
implement the transfer layer in the standard Linux TCP/IP protocol stack.
Dolphin cards (Revision D) transfer up to 22 MByte/s over that TCP stack
on the Pentium Pro platforms and about 30 MByte/s on a Pentium II plat-
form with BX chip-set.

IP on the SGI/Cray T3D: A T3D is unusually connected to a Cray
C90 or J90 vector processor as attached massively parallel multiprocessor
to complement the vector processing supercomputing capability. The T3D
processing nodes execute only threads in SPMD style tightly controlled by
the host. The small runtime system of the hosts did neither support an IP
number nor a socket API. A TCP/IP environment would not make much
sense in that context.

IP on Gigabit Ethernet: Gigabit Ethernet is backward compatible with
100 MBit/s Ethernet. Our first installation came with existing protocol stacks
for TCP/IP through the use of a standard device driver interface. Those
implementations delivered out of the box around 40 MByte/s per link of
TCP/IP performance measurable with the “Netperf” utility.

2.5.5 Discussion and Comparison

A summary of the measured throughput for the three technologies at diffe-
rent levels is given in Figure 2.17. The Direct Deposit performance is com-
pared to the MPI bandwidth with both blocking and non-blocking message
passing calls. The performance results confirm that the blocking MPI band-
width roughly matches the raw performance of the Direct Deposit whereas
the non-blocking calls with buffering semantics force Myrinet, SCI and the
T3D into copying. The performance drops down to the copy performance of
the local memory system in the corresponding Pentium Pro or DEC Alpha
node architectures. The TCP/IP performance on both PCI based techno-
logies (Myrinet and SCI) reflects the same results and again confirms the
overhead of copies in the main memory.

The efficiency of the network interface logic can be evaluated by the ratio
of raw data speed on the wires over the maximum throughput sustainable
between a sender and a receiver (see Figure 2.18). Assuming highly optimi-
zed drivers for this test the best measured or published values were used
for this comparison. The raw hardware speed is specified as 1.6 GBit/s for

2. A Comparison of SCI, Myrinet, and SGI/Cray 67

SCI and 1.28 GBit/s for Myrinet. For the SGI/Cray T3D the channel width
of its interconnect is known to be 16 bits plus handshake lines but to our
best knowledge the precise clock on the interconnect remained unpublished.
In some experiments the data can be pushed at a rate of approximately
160 MByte/s over a single link. The best packet layout is known to be 4-8
header flits and 16 flits of payload—therefore its raw link capacity must lie
between 1.28 GBit/s and 1.92 GBit/s. In all cases full duplex operation at
this speed must be assumed and is required for a proper characterization.
For most data transfers in real applications it takes the work of a sender and
receiver to make the entire transfer happen.

2.6 Summary

The performance of direct-deposit remote memory operations indicates ex-
cellent performance on both low-end Gigabit/s technologies for a few simple
cases. The transfer rates typically peak near the bandwidth limits of the PCI
bus or the interconnect speed and are in fact comparable to the rates seen in
traditional MPP supercomputers. Considering the drop in price for a com-
pute node in a parallel system during the past five years this is a remarkable
achievement of commodity interconnects. However such good performance
is only achieved for the most simple transfer modes and in straightforward
communication scenarios like direct deposits of contiguous blocks of data by
remote stores or also in libraries with restricted MPI semantics. For strided
remote stores or for remote loads of single words, the performance figures of
the SCI and Myrinet interconnect collapse, while the traditional MPP can
do even those cases at acceptable copy bandwidth.

In PCI bus network adapters the DMA transfers suffer from the overhead
of too many DMA initializations and too many PCI bus arbitrations. This
problem can be bypassed in a buffer-packing mode with a main processor
performing gather and scatter operations at about memory copy bandwidth.
For the implementation of message passing libraries with buffering semantics
(e.g. MPI) the performance of the Myrinet interconnect is reduced to the
local memory system bandwidth while the traditional MPP has a better me-
mory system and can do those cases at better speeds. Similar limitations due
to copies in the local memory system occur in the IP-over-LAN emulation
transfers in most cases. Because of an excellent implementation of BIP/IP,
the Myrinet has a slight advantage over SCI in TCP/IP performance and
delivers 40 MByte/s on TCP streams. This number was also matched by an
experimental Gigabit Ethernet installation with a 16-port Cabletron Routing
Switch and Packet Engines host adapter cards. Those results mean an im-
mediate increase of performance by a factor of 4-8 when upgrading from a
switched 100BaseT network to a Gigabit interconnect.

68 C. Kurmann, T. Stricker

References

1. Scali AS. ScaMPI User’s guide, 1997.
http://www.scali.com/html/scampi.html.

2. D. J. Becker, D. Sterling, T. Savarese, J. E. Dorband, U. A. Ranawake, and
C. V. Packer. BEOWULF: A parallel workstation for scientific computation.
In Proc. ICPP Workshop on Challenges for Parallel Processing, Oconomowc,
Wisconsin, U.S.A., August 1995. CRC Press.

3. N. J. Boden, R. E. Felderman, A. E. Kulawik, Ch. L. Seitz, J. N. Seizovic,
and W.-K. Su. Myrinet - A Gigabit per Second Local Area Network. In IEEE
Micro, volume 15(1), pages 29–36, February 1995.

4. K. Cameron, L. J. Clarke, and A. G. Smith. CRI/EPCC MPI for T3D. In Proc.
1st European Cray T3D Workshop, Sept 1995.
http://www.epcc.ed.ac.uk/t3dmpi/Product/Performance/index.html.

5. Y. Chen, A. Bilas, St. N. Damianakis, C. Dubnicki, and K. Li. UTLB: A Me-
chanism for Address Translation on Network Interfaces. In Proc. 8th Intl. Conf.
on Architectural Support for Programming Languages and Operating Systems,
pages 193–204, San Jose, October 1998. ACM.

6. Dolphin Interconnect Solutions. PCI SCI Cluster Adapter Specification, 1996.
7. M. Fillo, and R. B. Gillet. Architecture and Implementation of Memory Channel

2. Digital Technical Journal, 9(1), 1997.
8. A. Hori. Highly Efficient Gang Scheduling Implementation. In Proc. Supercom-

puting’98, Real World Computing Partnership, Nov 1998. ACM/IEEE.
9. GigaNet Inc. http://www.giganet.com.
10. INTEL Corporation. INTEL 440 FX PCISET, 1996.
11. J. D. McCalpin. Sustainable Memory Bandwidth in Current High Performance

Computers. Technical report, University of Delaware, 1995.
12. R. Numrich, P. Springer, and J. Peterson. Measurement of Communication

Rates on the Cray T3D Interprocessor Network. In Proc. HPCN Europe ’94,
Vol. II, pages 150–157, Munich, April 1994. Springer Verlag. Lecture Notes in
Computer Science, Vol. 797.

13. L. Prylli and B. Tourancheau. BIP: A New Protocol Designed for High Perfor-
mance Networking on Myrinet. Technical report, LHPC and INRIA ReMaP,
ENS-Lyon, 1997. http://lhpca.univ-lyon1.fr/.

14. R. Seifert. Gigabit Ethernet : Technology and Applications for High-Speed
LANs. Addison-Wesley, May 1998. ISBN: 0201185539.

15. T. Stricker and T. Gross. Global Address Space, Non-Uniform Bandwidth: A
Memory System Performance Characterization of Parallel Systems. In Proc.
3rd ACM Conf. on High Performance Computer Architecture (HPCA), 1997.

16. T. Stricker, J. Stichnoth, D. O’Hallaron, S. Hinrichs, and T. Gross. Decou-
pling Synchronization and Data Transfer in Message Passing Systems of Paral-
lel Computers. In Proc. Intl. Conf. on Supercomputing, pages 1–10, Barcelona,
July 1995. ACM.

17. W.-D. Weber, St. Gold, P. Helland, T. Shimizu, Th. Wicki, and W. Wilcke. The
Mercury Interconnect Architecture: A Cost-Effective Infrastructure for High-
Performance Servers. In Proc. 24nd Intl. Symp. on Computer Architecture
(ISCA), pages 98–107, August 1997. Product: http://www.fjst.com/.

Part II

SCI Hardware

Due to the complexity of the SCI interconnect standard and the intricacies
of building a hardware distributed shared memory (DSM) on a cluster of off-
the-shelf workstations or PCs, SCI hardware implementations are far from
trivial, even if they need not cover the SCI cache coherence protocols. The
SCI hardware relevant for this book are SCI adapter cards plugging into a
standard workstation or PC I/O bus, like Sun’s SBus or PCI. Using these
SCI adapters, high-speed point-to-point links and, possibly, SCI switches, off-
the-shelf nodes can be connected into a high-performance compute cluster.

Implementations of such SCI adapter cards need to address a number of
issues, the most important of which are: implementation of the physical-layer
and logical-layer SCI protocols; fault management; conversion from the I/O
bus protocol to the SCI protocol and vice versa; realization of the 64-bit SCI
address space (hardware DSM) and translation of the 32-bit physical node
addresses into SCI addresses and vice versa; mechanisms to import, export,
and mutually map memory segments of the nodes to instantiate the DSM;
providing transparent accesses for the CPUs to data living in the SCI DSM;
avoiding cache coherence problems on modifications to such data; delivering
high communication performance to the software.

Only a few implementations of SCI adapter cards with these capabilities
have emerged so far. Two of them are described in this part of the book, one
commercial adapter, the other developed in a research institution.

Chapter 3 describes the commercial SCI cards, developed by Dolphin
Interconnect Solutions, Oslo, Norway, and Framingham, MA, USA. Dol-
phin’s adapters have become wide-spread: companies like Sun Microsystems,
Scali A.S., and Siemens AG incorporate Dolphin technology into their high-
performance cluster systems, and almost all of the research and development
projects described in this book are based on these cards. The chapter co-
vers both SBus and PCI adapters and describes the solutions Dolphin has
developed for the issues mentioned above. For example, the physical layer
protocols are processed by a single chip, the so-called Link Controller, now in

H. Hellwagner, . Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 69-70, 1999
© Springer-Verlag Berlin Heidelberg 1999

70 SCI Hardware

its second-generation implementation (LC-2). Furthermore, innovative con-
cepts to boost performance, like write combining and the notion of streams,
have been introduced by these adapters.

Another PCI-SCI card, described in Chapter 4, has been developed by
researchers at Technische Universität München (TUM). The main motiva-
tion behind this prototype SCI adapter card has been to develop a piece
of hardware that can readily be extended by a hardware monitor at a later
stage. Within the framework of the SMiLE project at TUM, this monitor
is to be used as a basis for performance analysis and debugging tools. The
basic design and implementation of the adapter are described in this chapter,
whereas the monitoring concepts are introduced in Chapter 24.

It is worth mentioning that there is yet another prototype implementation
of a PCI-SCI adapter card, developed some years ago by CERN and associa-
ted institutions within the high energy physics research and demonstration
project RD24. Further information can be found at
http://nicewww.cern.ch/˜hmuller/sci.htm.

3. Dolphin SCI Adapter Cards

Marius Christian Liaaen, Hugo Kohmann

Dolphin Interconnect Solutions, Oslo
email: {info,support}@dolphinICS.no
http://www.dolphinICS.no/

3.1 Introduction

The Dolphin Interconnect Solutions SCI adapter cards have been available
since 1993 and have been in use in many applications at many different
sites. The product line started with a quite simple SBus card with limited
performance and feature set and continued with more sophisticated cards for
the PCI bus. All cards are based on the Dolphin Link Controllers LC-1 and
LC-2 (LC) [1] which are also used in many other applications like the Dolphin
SCI switches and other SCI hardware described in this book.

The SBus cards were developed in cooperation with Sun Microsystems to
be used in Sun’s clustering solutions. The development of the PCI-SCI bridge
was initiated by Dolphin to enable connecting SCI to a more widely used bus;
a cooperation with Siemens Nixdorf was established to achieve this after the
selection of SCI as the I/O interconnect for Siemens midrange servers. The
cards are available for 32-bit PCI at 33 MHz (PCI32) and 64-bit PCI at 33
MHz (PCI64). The PCI64 is a superset of PCI32. The description of PCI32
also applies to PCI64 except when explicitly stated otherwise. A 66-MHz,
64-bit version of the PCI card will be available in the near future.

This chapter describes how the SCI adapters work and what kind of ap-
plications the cards can be used in. Issues about using shared memory over
the I/O bus are also discussed. An overview of the different software com-
ponents and interfaces of Dolphin’s portable SCI driver will also be given in
this chapter.

3.2 Overview of the Adapter Cards

The Dolphin adapter cards allow direct mapping of memory accesses from the
I/O bus of a machine to the I/O bus and into the memory of a target machine.
This means that the memory in a remote node can be directly accessed by
the CPU using store/load operations giving the possibility to bypass time-
consuming driver calls in the applications. This is called shared memory or
Remote Memory Access (RMA). The high latency of accessing the remote
memory as compared to local memory, does not make it very attractive to
share program variables over SCI, since maintaining cache coherence is not

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 71-87, 1999
© Springer-Verlag Berlin Heidelberg 1999

72 M. C. Liaaen, H. Kohmann

possible on the I/O bus. A remote CPU read will stall the CPU, but writes are
posted such that the latency is minimized on writes. Sufficient data buffers
are available on the adapters to hide the latency from the local CPU. Message
passing using a write-only model fits very well into this scheme, offering a
low-latency, high-bandwidth and reliable channel that makes it possible to
implement efficient message passing interfaces like MPI [9], PVM [8], or VI
Architecture [10], as discussed in Section 3.11. The cards have been designed
to perform well on SCI writes supporting this type of interfaces.

The Direct Memory Access (DMA) engine is capable of moving memory
from a local memory buffer to a remote memory buffer, not using CPU cycles
for the transfer.

Dolphin SCI cards only support non-coherent SCI transactions and are
basically using SCI as a high bandwidth, low latency and reliable channel.

Connecting I/O buses together using SCI will logically form a long I/O bus
where all devices (CPUs, disk controllers, etc.) can reach all other devices and
memories. The local I/O space (32 bits) is mapped to a 64-bit SCI address
space where each address points to an SCI card elsewhere in the network
(see Figure 3.1). Exposing all resources on all I/O buses to each other is
of course a security risk which is minimized by hardware mechanisms and
cluster software.

SCI
Adapter

I/O Bridge

SCI
Adapter

I/O Bridge

SCI
Adapter

I/O Bridge I/O Bridge I/O BridgeI/O Bridge

CPU&MEM CPU&MEM CPU&MEM CPU&MEM CPU&MEM CPU&MEM
node 0 node 1 node 2 node 0 node 1 node 2

Physical Virtual

Fig. 3.1. Connecting I/O buses using SCI

The cards are divided into two parts: the Link Controller (LC) which
transports the packets over SCI, and the Transaction Controller (TC) which
takes care of packet building (data transfer), address mapping, DMA, inter-
rupts, error handling, etc. This chapter will describe the Transaction Con-
troller in more detail.

The LC has a back-end interface to SCI called B-Link, which is a packet
based, multi-agent, split-transaction bus, 64 bits wide and with a simple
control. B-Link is basically SCI presented in a different format (where the

3. Dolphin SCI Adapter Cards 73

SCI packets are encapsulated) to utilize a multi-drop bus. Echo packets and
synch packets (link layer) are never seen on this bus.

The TC on the SCI cards implements a bus bridge between SBus/PCI
and B-Link. Such a bridge can be implemented in many ways from the very
simple to a very sophisticated high performance device. The first TC for the
SBus was based on two Xilinx FPGAs and multi-port SRAMs but implements
DMA and RMA with good performance. The next generation PCI controller
was implemented in an ASIC giving considerable room for enhancements.
A basic block diagram of the PCI card is shown in Figure 3.2. The PCI-
SCI-Bridge ASIC (PSB32/64 [2]) was designed to accommodate both cluster
applications and remote I/O. This has given the PSB ASICs some capabilities
that make the PCI-based SCI cards also useful in nodes without CPUs.

SCI Link Controller
RX BufTX Buf

Bypass FIFO

SCI InSCI out

B-Link

Slave Master

PCI Bus

Pkt. Send
Fifo

RsOut BufRqOut Buf RsIn Buf RsOut Buf

RqIn
Fifo
2-32
pkt.

Stream buffers
16x128 byte Read
16x128 byte Write

Request
Packet Sender

Request
Receive/
Response
Send

Response
Receive

Address translation
table

PSB 32/PSB64
Config

Fig. 3.2. Basic block diagram of the PCI-SCI card

3.3 Operating Modes of the SCI Cards

Slave Mode. When the SCI card operates as a slave on the I/O bus, it will
translate I/O bus transactions into SCI packets. The nature of the I/O bus
and SCI (bus) is different. SCI is a split-transaction, point-to-point inter-
connect and the I/O bus uses only single one-phase transactions. The card
must handle these differences in an efficient way.

74 M. C. Liaaen, H. Kohmann

The transfer sizes on SBus and PCI do not match those of SCI which is
restricted to 1-byte through 16-byte or 64-byte transfers. (256-byte transfers
are not implemented in current cards.) SBus has transfer sizes that easily
map into this scheme. PCI is not that simple to work with since there are
no fixed transfer sizes. This makes it difficult to build a bridge that works as
efficiently as possible under all conditions.

The logic that transfers data into and out of the buffers onto the I/O
bus must do this in an efficient way to make the transfer as fast as possible.
We have used techniques like write gathering, speculative read buffering and
packet prefetching to make I/O transfers work efficiently on SCI. Especially
on PCI this has been challenging due to the large number of burst types
and the demand to make devices even with small FIFOs or host bridges
with limited write-combining capabilities achieve good performance over SCI.
Modern PCI devices and host bridge designs are typically capable of very long
bursts.

Master Mode. Transforming SCI transactions to the I/O bus is a simpler
task than the other way round. The SCI transfer sizes of 1–16 and 64 bytes
translate easily to I/O bus transactions on the I/O buses.

DMA Mode. The DMA engine utilizes both the slave and the master mode
of the SCI card. It requests transfers both from the I/O bus and SCI.

3.4 SCI Requester

When operating as a slave, the SCI card represents an SCI requester. Its
operation involves performing address mapping, generating SCI packets and
keeping track of transaction progress.

3.4.1 Address Mapping

Address mapping is the major issue when bridging from an I/O bus like
SBus or PCI to SCI. An I/O bus typically has a 32-bit address space. The
mismatch compared to the 64-bit address space of SCI must be coped with
using address mapping. The address mapping must be flexible and efficient to
handle many concurrent mappings. The mapping is based on pages with an
Address Translation Table (ATT) containing a map entry (page descriptor)
for each page describing the actual mapping of the page.

The page descriptor defines the full SCI address (16-bit node ID and
48-bit address offset). In addition it may also define transfer attributes like
write gathering on PCI, use of dmove SCI commands (for efficient unreliable
transfer), write before read ordering, generation of SCI lock operations, etc.
Figure 3.3 shows the basic address mapping from the I/O bus to SCI.

3. Dolphin SCI Adapter Cards 75

0

xGB

Physical
Address
Space

I/O
Address
Space

Adapter Address
Range

ID=1 OAddr

Address Translation
Page Table

Address space
shared with
System 0 (and
possibly other
systems)

SCI access
address
protection

System 0
(Node ID 0) System 1

(Node ID 1)

•••

System 2
(Node ID 2)

System 3
(Node ID 3)

ID=2

ID=3

OAddr

OAddr

Private Memory
Shared Memory

Address Mapping Generates
64-bit SCI Address

Fig. 3.3. I/O to SCI address mapping

Address mapping on the SBus card. The SBus card has a mapping
table with 1025 entries. It uses 64-bit ATT entries and has the capability to
map to the whole 64-bit SCI address space. The map page size is 256 kByte.

Address mapping on the PCI32 card. The PCI32 card has the mapping
table in SRAM, but it keeps an ATT cache of the last used ATT entry for
each stream. The PSB chip replaces the entry automatically on demand.

The page size is 512 kByte and the number of usable entries in the ATT
depends on the memory requirements of the board (from 16 MByte up to 2
GByte can be configured, depending on the application).

Address mapping on the PCI64 card. The mechanism works basically
the same way as on PCI32, but the page size ranges from 4 kByte to 512
kByte, depending on the memory demand (32 MByte to 2 GByte). There are
always 4096 entries available for use. The card supports PCI Dual Address
Cycles (DAC) (bypassing the ATT lookup mechanism) giving direct access
to the 64-bit SCI address space (limited to 42-bit address offset).

3.4.2 SCI Transaction Handling

It is necessary to have control over the requests the cards are sending to SCI,
in order to ensure that no packets are lost and no data errors or other errors
go undetected. There is no room for failure in this respect regardless of which
approach is used. The SBus and PCI cards are using different methods.

Counting packets on the SBus card. The transaction ID field in the SCI
packet together with the source ID uniquely identifies a packet on SCI. This
fact makes it useful to keep track of the number of outstanding packets by
tagging each packet with a unique transaction ID. By discarding all other

76 M. C. Liaaen, H. Kohmann

information than that a packet was sent, simple hardware requiring little
buffer capacity can be implemented.

Keeping full context on the PCI card. This is a much more powerful
approach that makes it possible to track all outstanding packets down to
destination node, address offset, data (on writes) and detailed error informa-
tion in case of errors. This method requires much more hardware but gives
more information to devise efficient software solutions for recovery.

Data buffers on the SBus card. The SBus card has two buffers which it
uses in a round-robin fashion. It keeps track of the number of packets sent
but does not maintain packet context, e.g. destination address. It can only
detect that packets are lost or that error responses have arrived. This context
throw-away gives limited error handling capability, but safe algorithms are
implemented in cluster software to make the transfer reliable.

Error detection might happen late and the information on what went
wrong is limited. The benefit of this method is that even with limited resour-
ces there can be up to 64 outstanding packets, only limited by the transaction
ID field (SCI restriction).

Two buffers are necessary only for performance increase utilizing pipeli-
ning, i.e. receiving data from the SBus and at the same time sending an SCI
packet from the other buffer.

Streams on the PCI card. On PCI, the requirements are much higher
both for context and buffer capacity. A stream consists of a data buffer (64
bytes on PSB32, 128 bytes on PSB64) and a context (PCI address, mapped
SCI address and status). In order to efficiently utilize the PCI and SCI band-
width, the streams are capable of doing write gathering and speculative read
buffering such that, if many PCI accesses are needed to transfer the data,
the PSB will wait for the next expected addresses (and data) and until the
buffer is full or empty. Explicit and implicit flush/invalidation of streams can
be done based on configuration.

The PCI32 card has 8 write streams and 8 read streams which can be
configured in different ways to support different resource allocation configu-
rations based on the PCI address accessing the card. Some streams can be
reserved for DMA engine use and/or assigning different number of streams
to different address windows within the card’s memory range.

The PSB has a complete context of all transactions outstanding on SCI
and in progress on PCI. Write gathering can be done on all 8 streams con-
currently.

The error handler can get detailed error information on each failing packet
(error type, address, and even write data). This way, a single error does not
necessarily result in a complete stop of all traffic over the bridge. This is a
requirement in I/O applications since one failure otherwise would affect all
drivers running the I/O applications.

3. Dolphin SCI Adapter Cards 77

3.4.3 SCI Packet Requester

The requester builds the SCI packets and keeps track of the packets ensuring
that a loss of a packet is detected. When a response arrives it updates the con-
text, transaction ID counter (SBus) or stream status (PCI). The capabilities
of the two adapters are quite different.

SBus card SCI requester. The SBus card is designed for efficient writes
over SCI and supports only a simple readsb command for remote probing
operations. The reason for this is found in the write-only programming model
used by the Dolphin software and Sun applications. Write posting is more
efficient than reading, especially when accessing slow memory (SCI is slow
compared to local memory access). A read stalls the I/O bus.

Table 3.1 shows the supported SCI commands on the SBus adapter.

SCI transactions SBus card PCI card
writesb 1,2,4,8 bytes All
readsb 1,2,4,8 bytes 1,2,4 bytes
nwrite64 Yes Yes
dmovesb NA All
dmove64 NA 64 bytes
locksb NA 4 byte fetch-and-add

Table 3.1. Supported SCI commands

PCI32 card SCI requester. The request packet sender takes the contents
of the stream when it is ready and makes the required number of SCI packets
to fulfill the work based on the stream contents and configuration. It can only
have one outstanding packet per stream at a given time and starts a timer
when sending in order to detect lost responses. Each outstanding packet sent
from the card has a unique transaction ID that matches the stream number
belonging to the packet. Thus, the stream to be updated when the response
packet arrives can be determined.

The request channel and the response channel are completely independent
in the card. Requests must never block for responses. The PSB32 can have
8 write and 8 read request packets in flight at the same time. The responses
can arrive in any order and all errors are handled independently per stream.
This method is quite costly in terms of hardware, but in some applications
it is necessary.

Stream selection both for write and read transfers are based on a method
called stream combination. The stream selected (1 through 7 for read and
write) by a PCI address addressing the card is determined by the address
offset bits. By selecting which address offset bits shall determine the internal
3-bit stream selector, different stream allocations can be set up. This method
was developed based on the fact that most transfers are block transfers where

78 M. C. Liaaen, H. Kohmann

the address is increasing linearly. Using this method several linear data trans-
fers can run in parallel and resource (stream) conflicts can be avoided since
the pool of streams can be divided between them. To the user (e.g. linear
DMA transfer from another device on PCI) it seems that the stream buffer
size increases beyond 64 bytes and that more outstanding packets are possible
when streams are combined. The biggest possible combined stream consists of
8 streams giving a virtual buffer size of 512 bytes and 8 outstanding packets.

Read and write streams can be configured individually. The life cycle
(when in active use for transfer) of a write stream starts when it is first
accessed and is not in use and ends when the corresponding response packet
is received from SCI. A read stream life cycle starts when it is accessed and
it is not in use and ends when the master on PCI has emptied the fetched
data. Both life cycles include a request and response phase on SCI.

The PCI card has equal possibilities for reading and writing. In order to
make read performance over SCI acceptable in I/O transfer operations, read
prefetching is implemented. This mechanism can be configured to work with
1, 2, 4 and 8 streams. When fully configured (level combination), one read
on PCI will result in 8 nread64 packets on SCI on consecutive addresses.
Whenever a stream is emptied (all 64 bytes are read) by a PCI master, a new
read request is automatically initiated, always keeping the prefetch pipeline
running.

Table 3.1 shows the supported SCI commands on the PCI adapter.

PCI64 card SCI requester. The PCI64 SCI card is very similar to the
PCI32 card, but offers more internal resources and enhancements for more
efficient use as a SAN interface adapter. The card has 16 read and 16 write
streams with increased buffer size (128 bytes). The page size is 4 kByte (or
more) and all transfer attributes are stored in the page entry. Associative
stream lookup on write streams ensures effective buffer usage and better
multiprocessor performance since the stream selection always selects a stream
that can be used and is not bound by the static stream combination scheme.
In addition an enhanced store barrier (see 3.8.2) per page is included.

3.5 SCI Responder

The SCI card also accepts request packets and converts the packets to I/O
bus transactions. This operation is more straightforward since there is no
inbound mapping on the current cards. Inbound mapping is the ability to
perform address mapping (which also might include address protection) also
when a packet arrives at its destination node.

A proper response to the request is sent after the fate of the request
packet is determined. Many things might go wrong in the responder, like I/O
bus retry time-out, request time-out, bus error, bus parity error, and access
protection violation.

3. Dolphin SCI Adapter Cards 79

Stomped packets or CRC error packets coming from SCI are skipped
resulting in a time-out at the sender. Such packets cannot be trusted in any
way. Full store-and-forward of request and response packets is therefore used
in the cards, i.e., the packet is checked for integrity before it proceeds to the
I/O bus.

The SBus and PCI32 cards have capacity for two incoming request
packets. This is sufficient for keeping full speed on the I/O bus. The PCI64
has a much bigger input buffer with space for 32 nwrite64 packets. This will
help to keep packets out of the interconnect to avoid retries on the SCI link
and in the SCI switches. Increased overall system performance is the result.

3.5.1 Mailbox

The Dolphin SCI cards have also implemented a feature called mailbox. Spe-
cial SCI packets are tagged (by the address mapping) and handled in the card
in a special way. The packets are stored in a location determined by software
at the target node (i.e. not using the address offset in the SCI packet hea-
der). When a mailbox packet arrives, an interrupt is raised. The benefit of
this feature is to enable the drivers on the different cards talk to each other
without having access to the address of a remote message buffer.

Mailbox on the SBus card. Inbound packets with address offset bit 47
set to 1 (done by the mapping) will be stored in the mailbox buffer in the
card. The driver will be interrupted and will inspect the packet.

Mailbox on the PCI card. These packets are tagged with a special target
node ID and stored in a ring buffer in main memory maintained by the
card. The driver reads the head of the buffer when triggered and inspects the
packets.

3.5.2 Access Protection

The PCI card has also implemented access protection based on address ranges
in the 4 GByte address space (Read Only, Read Write and No Access).

It is also possible to enable access protection from groups of source IDs
(16 in each group). Any request from these node IDs will result in an error
response.

3.5.3 Atomic Access

SCI defines lock operations using locksb packets where both operand and data
is part of the request packet. The response packet contains the value of the
lock location before the operation takes place (old value). The operation, i.e.
reading the old value, computing the new value, and writing the new value
is executed atomically in the responder.

80 M. C. Liaaen, H. Kohmann

The PCI card is able to handle 4-byte locksb packet requests. The locksb
action is a read-modify-write operation. Note that the operation is only ato-
mic as seen from SCI. As a consequence, all accesses to synchronization va-
riables must be done from SCI (not locally). The PCI card is capable of
using the #LOCK signal, which is rarely used by computer host bridges
(CPU/memory-to-PCI bridge).

A fetch-and-add-1 request can be directly generated from the address
mapping by the SCI requester. Both read and writes will generate locksb
with fetch-and-add 1. The old value returned on PCI reads will proceed to
PCI as a normal read. On PCI writes, the old data is skipped.

3.5.4 Host Bridge Capabilities

To operate as a host bridge-type device the PCI card must also be able to
handle the extra tasks required by a host bridge.
Remote configuration. The PCI card has the possibility to do configura-
tion cycles as master. This makes it possible to do remote configuration of
e.g. nodes without CPU.
Event reporting. A special unit on the PCI card is implemented to forward
interrupts and SERR# from the local PCI bus to a selected host connected
to SCI. The card is capable of reporting interrupts on INTA/B/C/D.
I/O cycles. The card is capable of generating I/O read/write commands as
a master on the PCI bus. This is necessary to control devices that only im-
plement I/O space access for the control registers (most devices are memory
mapped, though).

3.6 DMA Transfers

In order to off-load the CPU for large block transfers, the SCI cards have
a built-in DMA engine capable of chaining control blocks. The DMA engine
operates concurrently with other traffic both in the requester and responder.

3.6.1 DMA Transfers on the SBus Card

The control blocks are stored in on-board SRAM and the machine is capable
of writing to SCI only. The block size has a 64-byte granularity.

3.6.2 DMA Transfers on the PCI Card

The DMA control blocks are stored in a 4-kByte PCI memory block. The
DMA engine will fetch the new control block after finishing the current one.
Interrupts can be set after any desired block and the engine will stop im-
mediately after an error. The block size granularity is 4 bytes and a 4-byte
alignment is required.

3. Dolphin SCI Adapter Cards 81

3.7 Interrupter

The cards are able to generate interrupts by asserting the interrupt pin. The
interrupt handler can investigate the source of the interrupt by inspecting
registers on the card. Interrupts are typically used to forward notifications
from remote nodes or to notify local errors of any kind.

On the PCI card, there are several ways a node can generate interrupts on
remote nodes. Interrupts can be used e.g. to notify end of message transfers.

3.8 Concurrency Issues

When the card is used for message passing as an SAN SCI adapter, there are
several issues that are important for the overall performance. Raw bandwidth
is one thing, but another thing is how to make efficient use of this bandwidth
in a modern multiprocessor computer system.

3.8.1 Write Assembly

A typical use of the PCI card is in an Intel-based server with up to four
CPUs. When all four CPUs are using SCI for message passing and there is
no synchronization between the processes (or threads) running on the CPUs
that regulates access to the card, there might be four different messages being
sent at the same time (assuming writes). In this case, the PCI host bridge
will not be able to make long bursts for each of the messages. The card must
be able to handle four different burst streams and write-gather the data to
make efficient 64-byte transfers on SCI.

This can be done on the PCI32 card by dividing the available eight streams
into four windows and assign each CPU to one of the windows. The problem
with this solution is that the utilization of the streams will be poor and that
the CPUs cannot reach peak bandwidth. Combining all streams into one
window is also possible but will result in low performance when more than
one CPU is accessing the card. The PCI64 card has a 16-way associative
stream lookup to avoid this problem. This means that write gathering is
possible on all 16 streams concurrently with no restrictions on addresses.

3.8.2 Efficient Store Barrier

Another issue in the scenario above is the store barrier. Each thread (CPU)
must be able to check that a sent message really was delivered without any
errors. This operation (the store barrier) should be able to be performed
without affecting the other sending (writing) CPUs. A typical store barrier
in the PCI32 card (and in principle in the SBus card) looks like this:

1. Flush all write data (a register read).

82 M. C. Liaaen, H. Kohmann

2. Wait until all outstanding write requests have completed (an ordered
register read will not return data until all outstanding write packets are
done).

3. Check if any errors occurred (a read of a status register).

For a single CPU this is an efficient algorithm, but when a CPU is per-
forming a store barrier in the middle of the data transfer of another CPU,
the latter transfer is affected for two reasons.

The flush might lead to non-optimal SCI transfers (i.e. writesb instead of
nwrite64) which will slow down the transfer. In addition, the ordered read
will stall the packet-sending pipeline for a short time (typically around the
latency time). When there are small messages being sent, the above issues
will degrade the throughput considerably if store barriers are needed on each
message.

The PCI64 card has addressed both these issues by providing a store
barrier that avoids the global effects of the write flush and pipeline stall.
Each page can be flushed individually and the ordered read is replaced with
a simple poll not affecting the other pages/CPUs (except for traffic on the
PCI bus).

3.9 Performance

Table 3.2 shows some best case bandwidth numbers for the SCI cards. All
numbers are real numbers measured in applications (except for the PCI64
card which has been simulated).

Transfer SBus card PCI32 card PCI64 card
SCI card to memory 30 88 125
Bus master to SCI card 30 104 172
DMA push (Wr) 27 74 125
DMA pull (Rd) NA 64 125

Table 3.2. SCI cards bandwidth comparison (MByte/s)

3.10 Applications and Topologies

The Dolphin SCI cards are useful for many applications. The technology
provides a communication channel with high bandwidth and low latency (2.3
μs) that supports both mapped memory accesses (e.g. CPU to SCI) and DMA
transfers. The PCI card also provides additional features that broadens the
usability of the technology into the System Area Network (SAN) space.

3. Dolphin SCI Adapter Cards 83

3.10.1 SAN Interface Adapter

This is currently the main application of the SCI cards. Most cluster appli-
cations are using message passing as a means of process communication. SCI
is very well suited for this type of communication. Several message passing
libraries for the cards have been developed (e.g. MPI [9] and VI Architecture
[10]) supporting parallel computing and highly available parallel database
servers like Oracle’s Parallel Server (OPS) and IBM’s DB2.

Traditional network drivers can also utilize the technology to get more
speed even though the software overhead in the protocol stack is still a bott-
leneck. DLPI (Solaris) and NDIS (Windows NT 4.0) are examples of this
type of driver.

3.10.2 Remote I/O Connection and Data Acquisition

The PCI cards can also be used for this type of application when there is no
CPU attached to the PCI bus implementing an I/O subsystem supporting
many PCI slots using PCI-to-PCI bridges. Local configuration is set up re-
motely from, e.g., a node connected to SCI. Siemens is using SCI and PCI
components from Dolphin for remote I/O access in their midrange servers
with support for 144 PCI slots usable from 24 CPUs in a system (system RM
600 [4]).

Siemens is also developing software for Windows NT that enables a stan-
dard server to connect to the remote I/O subsystem using the PCI card as
the host adapter in the server.

Dolphin has also a PMC (PCI small form factor [6]) version of PCI32 to
be used typically in data acquisition applications.

3.10.3 Switches and Topologies

SCI can be connected in many topologies. Dolphin has concentrated its work
on switch-based topologies since this gives the best resilience and availability
required by e.g. database cluster applications. A basic adapter card has only
one link controller restricting the topologies to single rings and switches.
Several adapters may be used in one machine for redundancy and/or more
bandwidth.

A 4-port non-cascadeable switch is available both for SBus and PCI cards
(see Figure 3.4. The new switch from Dolphin is cascadeable up to 16 nodes
suitable for bigger SAN systems requiring high bandwidth and low latency
(PCI cards only). Next-generation switches featuring LC-3 will have up to 32
ports with increased internal bandwidth and lower cost per port.

A special version of the PCI32 card has been developed where there are
two LC-2 chips (with a mezzanine connection) per card giving the possibility
to make a 2D mesh structure or counter-rotating rings, for instance. SCALI

84 M. C. Liaaen, H. Kohmann

Ring Topology

SCI Switch

Fig. 3.4. Switch and ring configuration

Computers [5] are using this feature in their installations, e.g. in the large-
scale University of Paderborn machine which has 96 nodes connected as a 8 x
12 2D torus [3]. Figure 3.5 shows two ways of connecting the PCI-SCI cards
using double SCI links.

0.0

3.3

3.0

0.3

4 x 4 2D Mesh

A B C D

Counter rotating rings

Fig. 3.5. 2D mesh and counter rotating ring configuration

The PCI64 card has the possibility to have two extra LC-2 chips (attached
on a mezzanine card) making it possible to construct 3D meshes. The table
routing capabilities of LC-2 gives many possible topologies.

3. Dolphin SCI Adapter Cards 85

The SCI link connection uses standard parallel copper cables and signa-
ling as specified in the SCI subspecification IEEE 1596.8. The links run at 100
MHz. A parallel optical solution exists for the PCI cards and switches (PA-
ROLI, developed by Siemens [4]). This type of connection allows distances of
up to 150 meter.

3.11 Cluster Software

To allow easy access to SCI and clustering, Dolphin provides drivers and
programming interfaces on various levels. Figure 3.6 shows the different com-
ponents of the cluster software.

DLPI/NDIS

SBus or PCI card

Windows NT
Linux etc.

Solaris

PALIF

Supported topologies:
2-16 node switch

Network
Interface

(Socket,API) (Direct SCI Libs)

VI
PVM/MPI

Kernel Space

User Space

User Libs

GENIF
clientsSW layers

IRM

PAL

GENIF

O
SI

SiSCI

2-4 node ringlet

Optical connection

HW

O
SI

F

Applications

Fig. 3.6. Overview of Dolphin cluster software components

The Physical Abstraction Layer (PAL) is the lowest layer in the software
stack. This interface provides a procedural interface for directly programming
the hardware independent of the implementation details for the various SCI
adapters. Currently there exist PAL libraries for both the PCI and the SBus
cards. On top of the PAL is a portable kernel agent called the Interconnect

86 M. C. Liaaen, H. Kohmann

Resource Manager (IRM). The IRM exports an interface that allows the
construction of intermediate device drivers. This GENeric InterFace (GENIF)
features a rich set of mechanisms for managing and utilizing clusters. The
IRM is particularly suited for clients that need to achieve high availability in
mission critical applications. Features such as reliable data delivery, hardware
fault detection and isolation, redundancy, and serviceability are supported
through the GENIF interface without loss of performance or latency. GENIF
has many benefits: it removes the complexity of writing hardware dependent
device drivers, and it allows multiple clients to utilize SCI and to coexist in
the same computer even running on the same SCI adapter card.

Typical GENIF clients are traditional networking drivers like NDIS and
DLPI and more specialized direct SCI interface drivers. These drivers are
required to enable applications to access the cluster.

A new interface called SISCI (Software Infrastructure for SCI) has been
defined in an ongoing ESPRIT project [7]. Dolphin has made a portable
implementation of this interface. The SISCI interface enables an easy-to-use
user-level interface to clustering. The portable IRM and SISCI software are
currently available on Windows NT x86 and Alpha, Solaris x86 and SPARC,
Linux x86, Lynx x86, and PowerPC.

The most common usage of the SISCI interface is the implementation of
efficient versions of known libraries/programming interfaces like PVM, MPI,
OPS, WinSock2, and VI Architecture [10]. For instance, Scali is using MPI
as the message-passing library in their computers.

The main programming features provided on the SISCI and GENIF in-
terfaces include:

– Construction of SCI accessible memory segments.
– Mapping of local or remote memory segments.
– DMA handling and queuing.
– Registration and triggering of remote interrupts.
– Atomic operations and conditional interrupts.
– Barrier and fail detection operations.

References

1. Dolphin Interconnect Solutions. LC-1/2 Functional Specification.
http://www.dolphinics.no.

2. Dolphin Interconnect Solutions. PSB32/64 Functional Specification.
http://www.dolphinics.no.

3. University of Paderborn, Paderborn Center for Parallel Computing. Primergy
High Scalable Server. http://www.uni-paderborn.de/pc2/systems/psc.

4. Siemens AG. RM600 Enterprise Servers.
http://www.siemens.de/servers/rm/rm us/rm600e.htm.

5. Scali Computer. Scalable Computer Systems and Technology.
http://www.scali.com.

3. Dolphin SCI Adapter Cards 87

6. IEEE Std-1386. IEEE Standard 1386 Common Mezzanine Card Family CMC.
The Institute of Electrical and Electronics Engineers, Inc.

7. ESPRIT Project No. 23174. SISCI – Standard Software Infrastructures for SCI-
based Parallel Systems. http://www.parallab.uib.no/projects/sisci.

8. PVM – Parallel Virtual Machine.
http://www.epm.ornl.gov/pvm/pvm home.html.

9. Message Passing Interface Forum. http://www.mpi-forum.org.
10. Virtual Interface Architecture. http://www.viarch.org.

4. The TUM PCI/SCI Adapter

Georg Acher, Wolfgang Karl, Markus Leberecht

Lehrstuhl für Rechnertechnik und Rechnerorganisation – LRR
Institut für Informatik der Technischen Universität München
80290 München, Germany
email: {acher, karlw, leberech}@in.tum.de
http://wwwbode.informatik.tu-muenchen.de/

4.1 Introduction

The SMiLE project (Shared Memory in a LAN-like Environment) at LRR-
TUM investigates high-performance cluster computing based on SCI inter-
connect technology [9]. The major research goal is to develop concepts, pro-
gramming models, and tools for the efficient use of a distributed shared
memory (DSM) system with NUMA (non-uniform memory access) charac-
teristics. One focus within the project is to adapt and optimize “standard”
parallel processing software for SCI-based cluster environments. Several com-
munication libraries [8], a POSIX compliant distributed thread package [17],
and the MuSE runtime system combining DSM, multi-threading and data-
flow techniques [13] have been developed and implemented making use of
SCI’s hardware-based DSM.

A second focus are hardware developments which include a PCI/SCI ad-
apter [1, 2] and an SCI hardware monitor [11]. The TUM PCI/SCI adapter is
targeted for bridging the PC’s PCI local bus to the SCI network and serves as
basis of the SMiLE PC cluster. Pentium PCs equipped with these PCI/SCI
adapters are connected in a cluster of computing nodes with NUMA charac-
teristics.

The lack of commercially available SCI interface hardware for PCs during
the initiation period of the SMiLE project led to the development of our own
PCI/SCI hardware. Additionally, our own PCI/SCI adapter is designed for
extensibility and adaptability. It allows to attach a hardware monitor which
is able to deliver detailed information about the run-time and communication
behavior to tools for performance evaluation and debugging [12].

The PCI/SCI adapter has to translate PCI bus operations into SCI tran-
sactions, and vice versa. The interface to the PCI local bus is implemented
by the PLX bus master chip PCI 9060 [15], the SCI side is handled by the
Link Controller LC-1 manufactured by Dolphin Interconnect Solutions [4].
However, the control and protocol processing between these two commer-
cial ASICs has been realized with two field programmable gate array chips
(FPGAs).

This chapter presents the rationale and design of the TUM PCI/SCI ad-
apter. Especially, the implementation of the control and protocol processing

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 89-101, 1999
© Springer-Verlag Berlin Heidelberg 1999

90 G. Acher, W. Karl, M. Leberecht

units will be described in detail. Our approach for a structured hardware
design is based on microprogramming concepts enabling us to manage the
complex protocol processing.

4.2 The PCI/SCI Adapter Architecture

As already mentioned, SCI has been chosen as the network fabric for the
SMiLE PC cluster. Nodes within an SCI-based system are interconnected
via point-to-point links in ring-like arrangements or are attached to switches.
For the communication between SCI nodes, the logical layer of the SCI speci-
fication defines packet-switched protocols. An SCI split transaction requires a
request packet to be sent from one SCI node to another node with a response
packet in reply to it. This allows several transactions to be overlapped, thus
hiding remote access latencies.

For the SMiLE PC cluster, the PCI/SCI adapter serves as the interface
between the PCI local bus and the SCI network. As shown in Figure 4.1,
the PCI/SCI adapter is divided into three logical parts: the PCI unit, the
Dual-Ported RAM (DPR), and the SCI unit.

D32

4Kx32 2Kx64

A

PCI Unit SCI Unit

64D

A
PCI

SCI Out

SCI In

Handshake Bus

DPR B-LinkDPR Bus

Fig. 4.1. PCI/SCI adapter architecture

The PCI unit (Figure 4.2) interfaces to the PCI local bus. A 64 MByte
address window on the PCI bus allows to intercept processor-memory tran-
sactions which are then translated into SCI transactions. For the interface
to the PCI bus, the PCI9060 PCI bus master chip from PLX Technology is
used [15]. The main task of this chip is to transform PCI operations into bus
operations following the Intel i960 bus protocol, and vice versa. Two inde-
pendent bi-directional DMA channels are integrated, allowing direct memory
transfers between PCI and SCI initiated by the PCI/SCI adapter.

The protocol conversion from the i960 bus to SCI involves an address
translation to access specific pages on remote nodes. The address translation
data is stored in the address translation cache (ATC, 8k*24 bits), allowing
a maximum of 8192 pages with 4 kByte each to be addressed. For economic
reasons, only an 8-bit node address and a remote address range of 512 MByte
are used, so only three ATC RAMs are necessary for the implementation.

4. The TUM PCI/SCI Adapter 91

DPR

A A

D D

4Kx32 2Kx64

PCI9060

AD

FPGA#1

(SUPER_MAN)

EEPROM

BUF

PCI A

D

IO IO

Local Clock

ATC

RAM
8Kx24

12

24

CNTRL

32
i960
Local
Bus DPR

Bus

32

PCI Unit
Handshake Bus

Fig. 4.2. Block diagram of the PCI unit

The packets to be sent via SCI are buffered within the Dual-Ported RAM
(DPR). It contains frames for outgoing packets allowing one outstanding
read transaction, 16 outstanding write transactions, 16 outstanding messa-
ging transactions using a special DMA engine for long data transfers bet-
ween nodes, and one read-modify-write transaction which can be used for
synchronization. Additionally, 64 incoming packets can be buffered. During
the initialization of the DPR, constant values are written to the frames of the
outgoing SCI packets. Composing an SCI packet then only requires variable
data like addresses or data to be written into the appropriate fields.

The SCI unit interfaces to the SCI network and performs the SCI protocol
processing for packets in both directions. This interface is implemented with
the Link Controller LC-1, which implements the physical layer and parts of
the logical layer of the SCI specification. A 64 bit-wide synchronous back-side
bus for SCI link chips, the B-Link [6], connects the SCI unit and the DPR.
The B-Link data format comprises the SCI packet data format and some
additional information to accomplish a simpler handling.

The PCI unit and the SCI unit both contain an FPGA. These chips per-
form the control and protocol processing within and between the two units.
As FPGA resources are rather limited compared to ASICs, an implementa-
tion based on an FPGA requires some special design rules to be considered,
especially when targeting higher frequencies. Due to the rather complex task
of translating PCI transactions into B-Link packets and vice versa, the imple-
mentation of the PCI unit’s FPGA demanded a careful application of those
rules. The following section gives a detailed description of the design aspects
for the PCI unit’s FPGA, discussing the design problems and their solutions.

92 G. Acher, W. Karl, M. Leberecht

We then describe briefly the much less complex SCI unit and finally present
some performance data of our PCI/SCI adapter implementation.

4.3 SCI Packet Encoding and Decoding

4.3.1 Overview of Packet Processing

To illustrate the various actions during packet processing, the following ex-
ample describes a remote write operation.

The PCI9060 transforms the PCI write transaction into the PCI unit’s
local bus operation. The PCI unit controller recognizes that an SCI write
transaction has to be composed. With the help of the ATC, the PCI address
will be translated into the address for the remote SCI node. The translated
address will then be written into the DPR. Subsequently, the buffered data
will also be written into the DPR. The target address and the number of
bytes to be written are used to generate the SCI command for single-byte
writes.

The PCI unit controller informs the SCI unit controller about the comple-
tion and the position of the request packet within the DPR. Simultaneously, a
timer is started which stops upon receipt of the response packet. This feature
allows packet loss to be identified.

The SCI unit controller starts the transmission of the packet to the LC-1
via the B-Link. The LC-1 directs the packet to its output link, thus sending
the packet to the remote SCI node.

On the receiver SCI node, the LC-1 directs the packet onto the B-Link.
The SCI unit controller writes the packet into an incoming packet frame
within the DPR and informs the PCI unit controller about the arrival of
the packet. The PCI unit controller extracts the SCI command from the
packet in order to determine the actions to be performed. The address will be
extracted from the packet’s address field and put onto the internal i960 bus.
Afterwards, the data will be put on the i960 bus and written into the memory
by the PCI9060. After completion, a response packet will be generated on the
receiver node and sent back to the requester node, where the timer will be
stopped and the packet frame released.

4.3.2 Choosing the Technology

The previous description indicates that despite the use of two specialized
commercial ASICs, the main task of the PCI/SCI bridge has to be done by
custom hardware: the conversion from the bus-oriented i960 protocol to the
packet based B-Link protocol of the LC-1 and vice versa.

It became clear that this task cannot be easily achieved with lower inte-
grated programmable logic devices (CPLD technology). The PCI unit has to
handle reads and writes from the PCI side as well as read and write requests

4. The TUM PCI/SCI Adapter 93

from the SCI unit. Furthermore, the implementation of a semaphore/lock
transaction and an efficient DMA block transfer were considered to be very
useful additions. In order to fully use the low SCI latency, none of these
transactions (except the lock) should need any additional software actions
for packet encoding and decoding. Thus all encoding/decoding has to be
implemented in hardware. An SCI lock transaction cannot be transparently
handled through the PCI bus and the whole SCI network, because the locked
PCI bus transfers are more general than the SCI lock operations.

Eventually, the usage of SRAM based XC4000E-series FPGAs from Xilinx
[18] seemed to be the only way to implement the controlling parts of the
PCI/SCI bridge. Not only their relatively low cost and good performance,
but also their reconfigurability in the environment of ‘unknown’ chips (the
PCI9060 and the LC-1 were used the first time) lead to this decision. This
may also decrease the amount of work to implement new features in the
future. The VHDL [16] implementation tools from Synopsys were chosen for
the design entry.

During the design phase, the RAM functionality (implementing small
RAM blocks inside the FPGA) of the XC4000E became very useful, because
many details could be implemented in an easy and straightforward way (na-
mely by the micro-sequencer described below).

In the following, the FPGA of the PCI unit is called the ‘SCI Upload/Packet
Encoder Management’ (SUPER MAN).

4.3.3 Internal Structure of the FPGA

The SUPER MAN FPGA chip is responsible for controlling and coordinating
the translation of read/write accesses into B-Link packets, and vice versa. It
comprises several functional units which are shown in Figure 4.3.

While evaluating the specifications for the controller, it became obvious
that the somewhat complex data flows and the encoding/decoding actions
in the PCI unit could be separated into five main parts (objects, see Figure
4.3), communicating only with a few signals (commands).

The functional units of SUPER MAN are controlled by the Packet Ma-
nager unit (PAC MAN). It contains a microcode sequencer and a writable
control store with the microprograms controlling the other functional units.

For example, there are microprograms for translating a PCI address into
an SCI address and writing them into the DPR, for generating SCI commands
from addresses or byte enables, and for transmitting data into the DPR.

The Local Bus MANagement unit (LB MAN) recognizes whether there is
a request on the local i960 bus. Depending on the state of the read/write and
DMA signals, it determines which microprogram has to be executed. The
LB MAN sends the appropriate control information to the TRANSAction
Management unit (TRANS AM). This unit checks its transaction queues for
outstanding requests or free entries and forwards the received control infor-
mation to the PAC MAN. If an SCI packet arrives, a control command for

94 G. Acher, W. Karl, M. Leberecht

the PAC MAN will be generated from the SCI command using a translation
table.

The TRANS AM determines the DPR base address for the appropriate
packet frame. It also coordinates between local bus and SCI requests and
communicates with the corresponding unit within the SCI unit.

Transaction-
Queue 1
+ Timeout

Transaction-
Queue 1
+ Timeout

PAN_AM

LB_MAN

CONfiguration

ANagerM

CONAN

Microcodesequencer

Slave

Master

Burst

Latch

TRANSAction Manager

TRANS_AM

PACket MANager

PAC_MAN

PCI Unit’s
Local Bus

Local Bus
Manager

LSB/Byte Enables

Microcode

Start Action/Status

Program

Bus
Status

CMD CMD

CMD Status
CMD

Port/Access/
eNAble Manager

To/From BAT_MAN

OE
WE

DPR-ADR

DPR-ADR-LSB

DPR-DATA

ATC-ADR
LC-INIT

D_MAN
Data MANager

Accu

Adder

Compare

SCI-CMD
Gen.

Fig. 4.3. Structure of SUPER MAN

The five separate units of the SUPER MAN FPGA are now described in
detail:

– Local Bus Manager (LB MAN):
This controller serves the i960 local bus. This includes accepting accesses
via the PCI9060 (PCI→SCI), generating a status describing the access
type, and starting accesses to the PCI9060 (SCI→PCI, issued by a specific
command such as READ or WRITE). Although controlling the i960 bus
state, LB MAN has no knowledge of the transferred data itself or any data
flow concerning other buses than the i960 bus.

– Data Manager (D MAN):
This unit interfaces to the external DPR bus. Depending on the command,
it stores internally some fields of the PCI and SCI data or generates specific
data itself (e.g. the SCI commands). It is also used as an ALU for the
‘Bounded Add’ operation (needed for the SCI lock transaction).

– Port/Access/Enable Manager (PAN AM):
Encoding and decoding involves the transfer of data from different sources
(i960 bus, incoming packet data in the DPR, address translation RAM

4. The TUM PCI/SCI Adapter 95

and the data generated by D MAN) to various sinks (i960 bus, outgoing
packet data in the DPR, internal registers). Although there seems to be
a great number of these data flows (complicated by different bit fields
and offsets) they can be reduced to 15 simple flows. Depending on the
command, PAN AM sets the needed internal and external buffer enable
and read/write signals, allowing addressing of some specific locations (bit
fields, like the SCI command field) in the ‘current’ B-Link packet (packet
base) and combining them with a source or sink.

– Transaction Management (TRANS AM):
The Transaction Management sets the DPR packet base address correspon-
ding to the current LB MAN status (read/write from PCI) or to the next
incoming packet. An arbiter selects between both possibilities. In some ca-
ses it is necessary to switch to another packet base (e.g. get read data from
a read response), so there are specific packet base ‘override’ commands.
As the SCI network supports split transactions, there are also two book-
keeping units for regular writes and DMA writes with 16 entries each. Since
PCI only supports posted writes, SCI read transactions cannot overlap on
the initiator side.
The main task of TRANS AM is starting the appropriate encoding/decoding
action, depending on the status of the i960 bus and the command from an
incoming SCI packet. The actions themselves are controlled by the next
unit.

– Packet Manager (PAC MAN):
In order to encode or decode a packet and to serve bus accesses, this unit
issues the right sequence of commands to the other four units. Depending
on the needed action, this sequence can be linear, with wait states or a few
branches.

4.3.4 Structure of the Packet Manager as a Microcode Sequencer

As stated above, the various actions for packet encoding and decoding are
controlled and coordinated by the Packet Manager. Its behavior can be de-
scribed as a finite state machine (FSM) consisting of about 60 states. Each
state outputs the four 4-bit commands to the other functional units. In total
there are more than 80 state transitions, most of them unconditional. Yet,
some transitions are more complicated, e.g. wait states or the initial dispat-
ching of the 16 needed actions (e.g. generating single-byte write requests).

The first approach in implementing this state machine was a conventional
one, using the case-when construct in VHDL. After the first tests with only
30 states, it became evident that this way was not feasible for an FPGA.
The highly irregular structure of the state decoding and the relatively wide
(16 bits) and densely packed command output were synthesized into a very
large and slow circuit (max. 14 MHz for an XC4013E-3). Because the target
frequency was 25 MHz, this result was considered unacceptable.

96 G. Acher, W. Karl, M. Leberecht

Although it would have been possible to use a special tool for the FSM
synthesis, the simple command scheme of the other functional units and the
RAM capability of the FPGAs led to another idea: the implementation of
a small, specialized micro-programmable processor. This approach was also
stimulated by the circumstance that the program-like flow of the actions
could very easily be translated into microcode.

The usage of microcode for a program sequence is not new, but mainly
used in microprocessor applications. Older FPGAs without the RAM capa-
bility only had the possibility to implement microcode with external RAM
(slow) or with lookup tables (ROM). For each change in the microcode, the
design would have to be re-routed. Thus microcode in FPGAs is rare.

A detailed analysis showed that a very simple microcode sequencer could
cover all needed state transitions and output signals, some of them without
any need of explicit or complex implementation (see Figure 4.4):

The internal structure of the microcode sequencer consists of the following
parts:

– Normal execution:
Comparable to some other microcode machines (e.g. the AM29xx series
[3]), the ’Next-PC’ is encoded in the microinstruction word. Hence, there
is no need for an adder and an additional branch logic. The necessary RAM
for the ’Next-PC’ is arranged as 64*6 bits. The XC4000-series has 32*1-bit
RAM cells, accounting for 12 configurable logic blocks (CLBs) for the RAM
itself and another 6 CLBs for the additional demultiplexers and flip-flops
for the clocked operation.

TRANS_AM-CMD

PAN_AM-CMD

D_MAN-CMD

LB_MAN-CMD

64*16
RAM

NEXT-PC RAM

RAM
64*6

A

A

Start-PC
Start
Interrupt
Ready Sequencer

RAM
64*3

MUX-CMD RAM

D

D

D

D

A

D

D

PC

Fig. 4.4. Structure of the microcode sequencer

4. The TUM PCI/SCI Adapter 97

– Command outputs:
Parallel to the PC RAM input, there are the four 64*4-bit RAMs for com-
mand generation. Their clocked output feeds the four other units, so in
each microprogram step the units can operate in parallel.

– Starting a program:
For all encoding/decoding, TRANS AM sets a 4-bit command describing
one of the 16 possible actions. In order to start, the microcode sequencer
jumps to one of the first 16 locations in the control store where each action
has its entry point.

– Changes in the program flow
– Wait states:

When a packet is encoded or decoded, the state machine has to wait
until all data is accepted or delivered by the PCI interface, or a response
comes back from the SCI link.

– Interrupt and Return:
If a DMA write is aborted by the PCI9060, the unfinished packet must
not be sent until all 64 bytes are written into the packet. The next DMA
cycle has to return to that microcode position where the aborted cycle
left off (interrupt).

– Programming control:
There is an additional multiplexer input for the CLB-RAM address, al-
lowing the simple reconfiguration of the microcode (not shown in Figure
4.4).

4.3.5 Microcode Examples

To show the ease of development for the chosen microcode architecture, the
generation of a single-byte read request (R RQO) is shown. This textual
description is processed by a simple parser, generating the binary patterns
for programming.

PC Next-PC PAN AM D MAN TRANS AM LB MAN MUX CMD
2 19 TRANSADR 2 DPR GEN ADR LSB SEND R RQO NONE GO
19 20 TIDCMD 2 DPR GEN RRQ CMD NONE NONE GO
20 21 NONE NONE SET RRSI NONE MUX WAIT
21 63 DPR 2 DATAL NONE SET RRSI DATA READY GO
63 0 NONE NONE DONE DONE GO

The control flow is started with command ’2’, thus the sequencer begins at
PC=2. In this step the translated address is written into the request packet.
Due to synchronization stages on the B-link control logic, the packet can be
marked ‘ready to send’, even when it is not completely assembled. In the
second step the translated target ID (TID) and the read request command
(RRQ) are written into the appropriate places. At PC=20, the execution
waits until the response packet with the needed data arrives, then the packet
address is set to the incoming packet (SET RRSI) and the buffers are opened

98 G. Acher, W. Karl, M. Leberecht

to the local bus. At this point, the waiting PCI9060 access can be finished
(DATA READY) and in the last step all actions are finished.

The most complex microprogram is the execution of a lock operation
at the receiving node (only the ‘Bounded Add’ of the SCI specification is
implemented). It consists of 13 steps, implementing the read/modify/write
cycle with the arguments sent, plus the additional response packet generation:

PC Next-PC PAN AM D MAN TRANS AM LB MAN MUX CMD
/* Start the read cycle with a locked bus*/

7 41 DPR 2 ADRGEN NONE NONE NONE GO
41 42 DPR 2 ADRGEN LOAD ADRLSB NONE NONE GO
42 43 DPR 2 ADRGEN NONE SET RSO READ LOCK GO

/* Now wait for the data and write it in the response packet*/
43 44 DATAL 2 DPR NONE SET RSO NONE MUX WAIT

/* Also load the data in the ALU*/
44 45 NONE LOAD DATA NONE NONE GO

/* Read upper bound */
45 46 MAX 2 FPGA NONE NONE NONE GO

/* Read increment, latch upper bound */
46 47 OP 2 FPGA LOAD COMP NONE NONE GO

/*Latch increment and perform bounded add, start write back */
47 48 DPR 2 ADRGEN LOAD ADD NONE WRITE GO

/*Wait until data is accepted */
48 29 FPGA 2 DATAL STORE DATA SET RSO NONE MUX WAIT

/*Assemble response packet, swap source and target ID, early send */
29 30 TIDCMD 2 DPR GEN R16 CMD SEND RSO NONE GO
30 31 SIDTRID 2 FPGA NONE SET RSO NONE GO
31 32 FPGA 2 TIDTRID LOAD DATA SET RSO NONE GO
32 0 FPGA 2 TRID1 STORE DATA DONE RSO NONE GO

/* Done... */

This code re-uses some parts of the response-outgoing (RSO) code part
from the normal read action. Although the code has to deal with pipeli-
ning effects (e.g. D MAN load must occur one cycle after its corresponding
PAN AM read enable), the microcode approach shows its full elegance.

4.3.6 Benefits of the Micro Sequencer

While developing and testing the prototype, the reconfigurability of the
microcode (without a new VHDL synthesis) was heavily used for debugging.
Nearly all unknown or uncertain behavior of the two ASICs could be analy-
zed. The robustness of the various data paths (setup/hold) could be tested
with specific test (stress) patterns and sequences generated by the microcode.

After getting the prototype to work, some (previously unplanned) fea-
tures were implemented just by altering the microcode. In the same manner,
some activities were tuned saving one or two clock cycles. Some other features
presently not implemented such as support for remote enqueuing for an im-
provement of the Active Messages communication layer [10] and a touch-load
(reducing the effective read latency) should require only minimal changes in
the hardware itself.

In this application the microcode sequencer design shows its superiority
over the conventional way of designing state machines, especially for the
PCI/SCI protocol transactions with many unconditional transitions. Addi-
tionally, the possibility of reprogramming without a change in the synthesized
hardware makes it very attractive for prototyping and debugging.

4. The TUM PCI/SCI Adapter 99

4.4 The SCI Unit

The SCI unit (Figure 4.5) is connected to the DPR via the B-Link. The
B-Link Access and Transaction MANager (BAT MAN) controls B-Link ar-
bitration, reading or writing the DPR (on the SCI unit side), and drives the
B-Link control signals. It is also implemented on a FPGA chip, but is much
less complex than the SUPER MAN FPGA.

(BAT_MAN)

DPR

A A

D D LC-1

4Kx32 2Kx64

FPGA#2

Handshake Bus

SCI In

SCI Out

B-Link

64

SCI Clock

SCI Unit

B-Link / CNTRL

Fig. 4.5. Block diagram of the SCI Unit

4.5 Preliminary Results for the PCI/SCI Adapter

The logic of SUPER MAN currently requires about 325 CLBs (56% of the
XC4013 CLB resources), thus leaving enough room for new features. The
FPGA of the simple SCI unit consist of a XC4005E-2 (about 53% CLB usage).
Both units (and therefore the i960 bus and the B-Link) can run with 25 MHz.
The SCI link of the LC-1 is clocked with 50 MHz, transmitting data on both
edges.

The connection of two Pentium133-based machines via two PCI/SCI brid-
ges showed block transfer rates of up to 40 MByte/s (CPU-initiated i960-
DMA transfer and nwrite64 packets) and a bandwidth of 4 MByte/s for regu-
lar (non-burst) shared memory writes over SCI, demonstrating the overhead

100 G. Acher, W. Karl, M. Leberecht

of the protocol conversions. The PCI-to-PCI latency for these writes (on an
unloaded SCI network) is about 2.7μs, comparable to other PCI/SCI adapter
cards.

4.6 Related Work

The PCI/SCI adapter developed at CERN [14] uses also the LC-1 as the
SCI link controller and an FPGA from AT&T. Additionally, Dolphin now
offers PCI/SCI adapters [7, 5] based on the LC-1 and its successor LC-2. The
board implements all encoding and decoding logic in an ASIC. Due to the
‘write-combining’ feature and its custom PCI unit, it achieves higher data
rates (70-80 MByte/s) even for non-DMA transactions.

4.7 Conclusion

In this chapter, we described in detail the design aspects and implementation
of the PCI/SCI adapter for the SMiLE PC cluster. Additionally, we demon-
strated that, by means of traditional microprogramming concepts instead of
complex state machines, the FPGA design can be simplified. New features
of the PCI/SCI adapter can be integrated with minimal hardware changes,
mainly by adding microcode.

The PCI/SCI adapter allows the attachment of a hardware monitor which
gathers detailed information about the run-time and communication behavior
of a program. The experience gained with the development of the PCI/SCI
hardware will help us in designing and implementing the hardware monitor.
The hardware monitor is described in Chapter 24.

References

1. G. Acher, H. Hellwagner, W. Karl, and M. Leberecht. A PCI-SCI Bridge for
Building a PC Cluster with Distributed Shared Memory. In Proceedings Sixth
International Workshop on SCI-based High-Performance Low-Cost Computing,
pages 1–8, Santa Clara, CA, Sept. 1996. SCIzzL.

2. G. Acher, W. Karl, and M. Leberecht. PCI-SCI-Protocol Translations: Applying
Microprogrammable Concepts to FPGA. In R. Hartenstein and A. Keevallik,
editors, 8th International Workshop on Field Programmable Logic and Appli-
cations, FPL’98, volume 1482 of Lecture Notes in Computer Science, pages
99–108, Tallinn, Estonia, Aug. 1998. Springer-Verlag.

3. Advanced Micro Devices. Bipolar Microprocessor Logic and Interface: Am2900
Family Data Book, 1985.

4. Dolphin Interconnect Solutions. Link Controller LC-1 Specification, Rev.1.06,
1995.

5. Dolphin Interconnect Solutions, 1998. http://www.dolphinics.com.

4. The TUM PCI/SCI Adapter 101

6. Dolphin Interconnect Solutions. A Backside Link (B-Link) for Scalable Cohe-
rent Interface (SCI) Nodes, 1996.

7. Dolphin Interconnect Solutions. PCI-SCI Adapter Card Functional Overview,
Jan. 1999. Version 2.1.

8. M. Eberl, H. Hellwagner, W. Karl, M. Leberecht, and J. Weidendorfer. Fast
Communication Libraries on an SCI Cluster. In H. Hellwagner and A. Reinefeld,
editors, Scalable Coherent Interface: Technology and Applications. Proceedings
of SCI Europe’98, pages 165–175. Cheshire Henbury Tamwoth House, P.O. Box
103 Macclesfield SK11 8UW, UK, 1998.

9. H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High-
Performance Computing. SPEEDUP Journal, 11(1), June 1997.

10. H. Hellwagner, W. Karl, and M. Leberecht. Fast Communication Mechanisms–
Coupling Hardware Distributed Shared Memory and User-Level Messaging. In
Proc. International Conference on Parallel and Distributed Processing Techni-
ques and Applications (PDPTA’97), Las Vegas, Nevada, June 30–July 3 1997.

11. R. Hockauf, W. Karl, M. Leberecht, M. Oberhuber, and M. Wagner. Exploiting
Spatial and Temporal Locality of Accesses: A New Hardware-Based Monitoring
Approach for DSM Systems. In D. Pritchard and J. Reeve, editors, Euro-Par’98
Parallel Processing, 4th International Euro-Par Conference, Southampton, UK,
September 1-4, 1998 Proceedings, volume 1470 of Lecture Notes in Computer
Science, Berlin, Sept. 1998. Springer Verlag.

12. W. Karl, M. Leberecht, and M. Oberhuber. Enforcing Deterministic Execution
of Parallel Programs – Debugging Support Through the SMiLE Monitoring
Approach. In H. Hellwagner and A. Reinefeld, editors, Scalable Coherent Inter-
face: Technology and Applications. Proceedings of SCI Europe’98, pages 83–90.
Cheshire Henbury Tamwoth House, P.O. Box 103 Macclesfield SK11 8UW, UK,
1998.

13. M. Leberecht. A Concept for a Multithreaded Scheduling Environment. In
F. Hoßfeld, E. Maehle, and E. W. Mayr, editors, Proceedings of the 4th Works-
hop on PASA’96 Parallel Systems & Algorithms, pages 161–175. World Scien-
tific, 1996.

14. H. Müller, A. Bogaerts, C. Fernandes, L. McCulloch, and P. Werner. A PCI-SCI
Bridge for High Rate Data Acquisition Architectures at LHC. In Proceedings
of PCI’95 Conference, pages 156 ff, Santa Clara, USA, 1995.

15. PLX Technology Inc., 625 Clyde Avenue, Mountain View, CA. PCI 9060 PCI
Bus Master Interface Chip for Adapters and Embedded Systems, Apr. 1995.
Data Sheet.

16. R. Lipsett et. al. VHDL: Hardware Description and Design. Kluwer Academic
Publishers, 1990.

17. M. Schulz. SISCI Pthreads: SMP-like Programming on an SCI Cluster. In
High-Performance Computing and Networking (Proc. HPCN Europe), volume
1401 of LNCS, pages 566–575. Springer-Verlag, 1998.

18. Xilinx Inc., 1995. http://www.xilinx.com.

Part III

Interconnection Networks with SCI

Apart from the raw hardware capabilities of the adapter cards, low-level
routing policies and the configuration of the network are both critical for the
overall system performance. Such aspects are covered in this part.

First, Chapter 5 gives a comprehensive description of low-level SCI pro-
tocols, including the important topics of packet formats, flow control, and
bandwidth multiplexing. With this background, the architecture of current
switches is analyzed and an improved rule-based routing scheme is proposed
as a general routing method for high-speed networks.

The SCINET project described in Chapter 6 investigates SCI in the con-
text of large-scale data acquisition systems in fusion reactor experiments.
Again, switches play a decisive role in the efficient utilization of the network
and it is shown how commercial switches can be better exploited. The authors
have performed extensive simulations to underpin their approach. Moreover,
the authors argue that Banyan topologies often provide better throughput
and latency than conventional multi-stage networks.

The following two chapters are especially useful for those who are faced
with the task of determining the optimum configuration of a large SCI net-
work with as few hardware components (switches) as possible. While this
is a non-trivial optimization problem with many restrictions, analytical mo-
dels can be developed to provide adequate approximations to the solution,
as shown in Chapters 7 and 8.

How many nodes can be attached to a single SCI ringlet without impo-
sing too much network contention? According to the mathematical model in
Chapter 7, about ten nodes should be used as a maximum. Clearly, this is a
crude estimate, and it depends very much on the limited data injection rate
of the current PCI bus hardware. Several other factors, like message locality,
bypass rate, packet size, etc. also contribute to the number of nodes that can
be reasonably served on a single ringlet.

Chapter 8 also deals with scalability, but this time with respect to the
optimum number and configuration of ringlets in large systems. The results of
the analytical model in Chapter 8 is used by Scali in the configuration of their
large systems, like the one installed in Paderborn. Based on Dolphin adapter

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 103-104, 1999
© Springer-Verlag Berlin Heidelberg 1999

104 Interconnection Networks with SCI

cards that are equipped with more than just one link controller, it is possible
to build multi-dimensional tori. Chapter 8 shows how many dimensions are
needed for a given system size.

5. Low-Level SCI Protocols and Their
Application to Flexible Switches

Andreas C. Döring, Wolfgang Obelöer, Gunther Lustig, Erik Maehle

Medical University of Lübeck
Institute of Computer Engineering
Ratzeburger Allee 160, D-23538 Lübeck, Germany
email: {doering,obeloeer,lustig,maehle}@iti.mu-luebeck.de
http://www.iti.mu-luebeck.de

5.1 Introduction

The purpose of SCI is to provide a fast interconnection technology for up
to thousands of components. This chapter discusses several aspects of the
protocols used in SCI, especially regarding requirements and possibilities for
their implementation in hardware. One motivation behind the SCI standar-
dization effort was to enable SCI as interconnect for peripherals or memory
subsystems. Therefore, we discuss how the protocols can be implemented
efficiently and in a small chip area.

The first part deals with the data format of SCI packets (Section 5.2),
the protocols for allocating buffer space (Section 5.3) and bandwidth (Sec-
tion 5.4). In the second part, the architecture of current switches is taken as
a starting point for elaborating further demands and consequences for switch
architectures. One particular design question (strip-off decision) is discus-
sed in detail and an implementation option is given. A major issue of this
chapter is the introduction of the rule-based description method for routing
algorithms in Section 5.7. It is not only used to describe the examples of the
strip-off decision but it reveals a general approach to implementing routing
methods for high-speed networks.

5.2 Data Format of SCI Packets

In SCI, data is defined in terms of symbols, which are 16-bit words, i. e.
transmission is always done in multiples of 16 bits. Of course, larger entities
equipped with address, priority and so on are needed for transmission through
the network. These units are typically called packets. Their size is a critical
factor. If the communication system supports a wide range of packet sizes,
the bandwidth offered by the physical layer can be used very effectively by
transmitting almost exactly the required amount of data. However, handling
packets with a variable size is harder compared to fixed size, especially in

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 105-123, 1999
© Springer-Verlag Berlin Heidelberg 1999

106 A.C. Döring et al.

hardware. The choice of buffer size is also determined by the switching tech-
nique, e. g. packet or worm-hole switching (see [1]). For example, in packet-
switched networks like SCI all buffers must be able to host the largest packets.
Since SCI aims at low-latency memory access and at cheap implementation,
it supports pay load data sizes of 0, 16, 64, and optional 256 bytes. These
sizes are oriented at typical cache line dimensions and the need for small syn-
chronization packets. In order to detect transmission errors, the packets are
equipped with a 16-bit CRC checksum (Cyclic Redundancy Check). It does
not cover the bits for the low-level protocols to avoid re-computation of the
checksum at every node. Overall, the packets can have the following formats
(Figure 5.1). If not otherwise mentioned, the fields correspond to one symbol
(2 bytes).

CRC
data

extension
address offset

time of death transId
sourceId

bdw. all. queue ctl cmd
targetId

a) Send packet

CRC
sourceId

bdw. all. queue ctl transId
targetId

b) Echo packet

Fig. 5.1. Data format of SCI packets

There are two different kinds of packets with a common structure, send
packet and echo packet:

– Destination address (targetId).
– Fields for the flow control and bandwidth allocation protocols (bdw. all.,

queue ctl (4 bits each)).
– Command field (cmd (8 bits)) used to distinguish the packet types.
– Identification of the source node (sourceId).
– Time of death: This is the time when a packet is to be deleted, because

it has consumed too much time. The node where it has been generated
will eventually repeat it, because it has not received the echo in time. Of
course, this is only found in non-echo packets.

– Transaction number (transId).
– Address offset: 48-bit address of the referenced object at the target node.
– Header extension (optional, 16 bytes): May be used for advanced protocols.

When using the coherency option some of these fields are defined by the
standard.

– Data: Depending on the transaction type, this field contains read or to-be-
written data of the referenced object, e. g. a cache line. Depending on the
application it may have a different size.

5. SCI Protocols and Flexible Switches 107

– CRC: Checksum as explained before.

If no packet is transmitted over the link, idle symbols are used to fill this
gap. Although these symbols do not carry data, they are used for the link
protocols described in the subsequent sections. The detailed format of an
idle symbol is given in Section 5.4. Though the packet formats appear to
be complicated, they can be processed easily in hardware. One currently
available chip contains about 25000 gates (or 100000 transistors, without
buffers) which is not very much for today’s circuits.

5.3 Flow Control

A high speed communication system should avoid the loss of data. One reason
for data loss is node overflow, i. e. more data is sent to a node than it can
consume or store. The mechanism to avoid this situation is called flow control.
It can be done in several ways.

One way is end-to-end operation. By acknowledging the receipt of each
packet and re-sending a packet after a time-out when the acknowledgment is
missing, a reliable transmission can be established. In the network, packets
may have to be discarded due to buffer overflow. Using large buffers at every
node in the network reduces the probability of overflow and thus the proba-
bility of re-sends. However, the hardware cost for the buffers would be high,
especially in a large network. In addition it is hard to provide fairness bet-
ween nodes with different distances to a common destination. A worst case
scenario would be that no messages from certain nodes arrive in a heavily
loaded region.

The second option which is used for instance in Myrinet [4] and HIC [17]
is flow control on the link level, also called back-pressure. This means that
each link is equipped with backward control which will stop the transmission
if the data cannot be stored or processed anymore. For bi-directional connec-
tions this can be accomplished by inserting control characters in the data
stream of the opposite direction. Because there is some delay in the trans-
mission and processing of flow control information, a certain amount of buffer
memory must be reserved. Furthermore, additional delay is enforced because
the information about available buffer space has to be carried backward.

5.3.1 Flow Control in Rings

SCI applies a mixture of both methods. Flow control is only applied between
two nodes of a ring, while the visited nodes between them just pass data.
For this reason the transmission rate of an outgoing link has to be as high as
that of the incoming one.

Assume a node (requester) wants to send data to another node (respon-
der) in the same ring. If the requester allocated buffer space in the responder

108 A.C. Döring et al.

before sending the data, a high delay would be unavoidable. Thus, the data
is sent without guarantee that it can be absorbed by the destination node (a
‘trial’ in the following explanation). Therefore sending packets on the ring is
sometimes unsuccessful because packets are dropped.

For one responder there may be several requesters, and in one ring there
are usually several responders at a time1. In order to give all requesters the
same chance of being served, SCI applies a queue allocation protocol for
flow control. The flow control fields in request, response, and echo packets
(see Figure 5.1) are used to exchange information between requester and
responder, i. e. to inform the requester about the success of the transmission
and the state of the responder as well as to encode the kind of trial assigned
to a packet transmission. The general sequence is started by the requester
transmitting a send packet to the responder, which answers with an echo
packet. If such a trial was successful, the requester can remove its copy.
Otherwise it re-transmits the packet.

The sequence of transactions is separated into phases by the responder.
The protocol makes sure that outstanding requests from one phase are served
in the next phase before newly arriving requests are accepted. This has the
consequence that only requests from two phases have to be distinguished at
one time. To limit the amount of data for the protocol, a coloring scheme
is used, i. e. only three different kinds of trials are distinguished: normal, A,
and B. The protocol is symmetric regarding A and B.

Each responder is in one of four states in which it accepts normal and A,
only A, normal and B, or only B requests, respectively. Thus, for every phase
there are two states which improves the protocol in the context of rings with
distributed requesters. The responder changes its state when it accepts or
rejects a packet, or when a time-out occurs. The responder cycles through
these states, i. e. every state has exactly one successor. The protocol only
needs to determine when it must switch states.

5.3.2 Packet Sequence in SCI

When a packet is inserted into a ring for the first time, it is marked as
a ’normal’ transmission. In the responder there may be two reasons for
rejecting this packet:

Case 1: There is not enough queue space available.
Case 2: There is queue space available, but there are previous requests

which were rejected and have to be served first.
If a normal trial is rejected by a responder in ‘only A’ state, the packet

is re-sent labeled with B. Similarly in ‘only B’ state, rejected normal trials

1 It is a bit confusing that these terms are used in the SCI context for the original
ends of a transaction which may be located at different rings and for transmitting
and receiving inside a ring which may be intermediate nodes of the message path.
Nevertheless they are applied here to adapt common usage.

5. SCI Protocols and Flexible Switches 109

�

time

buffer
level

full
empty

responder state normal & A → only A → normal & B

nmt → rjA · · · rtA → acc

nmt → rjB · · · rtB → acc

transaction ii

transaction i

Fig. 5.2. Sample queue allocation sequence at one responder (nmt=normal trial,
rjA/rjB = reject A/B, rtA/rtB = retry A/B, acc = accept)

are re-sent as A transmissions. For an example, see Figure 5.2. Assume the
responder is in the ‘accept normal and A’ state, has a full buffer and rejects
a normal packet (case 1). Then this request should be favored over all newly
arriving normal packets. Therefore, the responder changes its state to accept
only state A packets and the repeated request is assigned with state A. In
this period, arriving normal packets are assigned phase B and will not be
served until all outstanding A requests are done (case 2, transaction i). In
this example this is only one request which is served after some time when
the buffer is nearly empty. Hereafter, B requests—and also normal requests—
are accepted, as for transaction i. As can be seen, the buffer fills up again,
because it holds these packets until they are processed. Symmetrically, if in
this state a request is rejected, it is assigned state B and the responder only
accepts B requests. Thus, if in situations of high traffic load filled-up buffers
are common, it will be seldom that a request is accepted at the first time;
the responders are most of the time in the accept-only-A and accept-only-B
states.

5.3.3 Determination of State Transitions

While changing into the ’only’-states is straight-forward, leaving them is har-
der. It has to be figured out when all outstanding A or B requests are done.
SCI applies a combination of two methods. In most cases it is enough to
count how many future A (respectively B) requests are generated by rejec-
ting a normal trial. The result can be compared to the number of served A
(or B) requests. Although this approach allows a responder to quickly enter
a state of acceptance of normal packets, it has limitations:

– The size of the counter limits the ring size, thus inhibits scaling. As for
speed reasons a counter with only a few bits is desirable.

– It bears the danger of misalignment of the counters for the outstanding A
or B requests. To avoid repeated CRC computation in the protocols, the

110 A.C. Döring et al.

protocol bits are not covered by the checksum. Hence, transmission errors
in the protocol bits are not discovered by the CRC.

For example, a responder may count up too far by receiving a corrupted
packet. In such a case the responder waits forever for an outstanding request,
that does not exist anymore. To avoid this, a time-out mechanism is added. It
has to make sure that every outstanding request on the ring has had a chance
to be repeated. If during this time for instance no repeated A transaction
occurs, no pending A requests are in the ring. This knowledge about the
possibility to re-send is represented by sufficient available bandwidth on the
ring for a certain time. The protocols are separately executed for request and
response packets.

Altogether the fairness achieved is not total, but the probability that
a message gets a large delay because it is discriminated too often is di-
minishingly small. It is obvious that the time critical operation of accep-
ting/rejecting a message cannot be much simpler; the flow control field (2
bits) from the header has to be checked according to one of four states at
the responder. Changing the state in the responder is similarly easy and less
time critical: checking whether the A/B-counter has hit zero, or a time-out
has been reached. This time-out is not generated by a clock but by a special
method in the bandwidth allocation scheme, presented in the next section.

5.4 Bandwidth Multiplexing

By separating the transmission of requests from their serving, the two poten-
tial bottlenecks in the system can be handled separately: overloaded servers
and overloaded media. While the queue allocation protocol handles the first
problem, dividing the medium capacity among all packets is the task of the
bandwidth allocation protocol. In non-ring systems with shared medium, e. g.
Ethernet, this is done by a distributed media access protocol. After an al-
location conflict, both transmitters have to wait for a minimum randomized
delay before a next try is allowed. This method wastes a lot of bandwidth,
because there are gaps when the medium is not used. In media with only
one driving source at one point, bandwidth multiplexing can be done much
better, because the demands for bandwidth are known beforehand. A good
example is ATM which applies certain traffic-shaping methods to guarantee
quality of service [22].

5.4.1 Bandwidth Management in One Ring

On a ring the situation is a mixture of the two approaches mentioned. The
ring segments are single-sourced, but the demands for ring bandwidth are
distributed. Locally, only the packets from the incoming link and the local
requests (packets in the send queue) can be seen. A new message can only be

5. SCI Protocols and Flexible Switches 111

injected if bandwidth on the ring is available. A purely local decision cannot
avoid the starvation of a node, due to the lack of knowledge about other
requests in the ring.

The problem of ring access is as follows. If a message A of a particular size
has to be injected into the ring and currently the ring is free, it is impossible
to know how long this will last. The insertion of a message with a certain
number of symbols into the ring is the replacement of idle symbols by data
symbols. If an insertion has started and a message arrives from the incoming
link, this second message is delayed in a so called bypass buffer. In order to
ensure that no message on the ring is destroyed by overflow of the bypass
buffer, message insertion is only possible if the bypass buffer is empty. In order
to send a message, a node has to wait for this situation; it starts transmission
in the next available bandwidth section.

The bandwidth allocation protocol ensures that no node has to wait too
long until it can start transmitting, by setting a further restriction. Its aim
is to favor a subset of more important transactions over others while still
guaranteeing the progress of all packets. Since the priorization adds com-
plexity to the protocols, it is optional. A node which can inject messages
with higher priority is called an ‘unfair-capable’ node. Nodes which are only
‘fair-capable’ inject messages with the lowest priority, thus guaranteeing that
messages with higher priority can get more bandwidth. Obviously the im-
portance of messages is best known where they are generated. That is why
every message is equipped at its source with a 2-bit priority stored in the
control field. Thus, four different priorities are possible. Bandwidth should
be divided equally among messages with the same priority. That means on
one ring, all messages at the top of the queue with the same priority have
the same expected waiting time until they are transmitted.

Dividing the bandwidth among four priority classes on the ring would
require a rather complicated protocol. To avoid it, on the ring only two pri-
ority classes are used, high and low. The mapping of the message priority to
the priority class on the ring is done by every node. It maintains an appro-
ximation of the current maximum ring priority (a value in the range from
0 to 3). If a message in this node has the same or higher priority than this
approximation, the message is assigned to the high priority class, otherwise
to the low one. Clearly the protocol can be separated into two parts: band-
width allocation according to the priority classes, and estimation of the ring
priority.

Bandwidth allocation: On the ring a lot of nodes can transmit messages
concurrently. That is bandwidth is not a single global resource but several
transmissions can take place concurrently. On the ring a free bandwidth sec-
tion is given by idle symbols.

If a node can access the ring, i. e. its bypass buffer is empty, the alloca-
tion protocol further restricts the permission of a node to insert a message.
For fairness, the node may have to be forced to transmit the idle symbols

112 A.C. Döring et al.

it receives to the following nodes keeping the bandwidth for them. Hence,
protocol-related information is encoded in the idle characters.

5.4.2 Idle Symbols

To allow priorization, two kinds of idle symbols are distinguished: high-type
and low-type. High-type symbols may only be deleted for allocation by a mes-
sage in the high priority class. However, the transmission of high-type idles
is delayed in a node with non-empty bypass queue, that is the occurrence of
high-type symbols is saved until the FIFO has run empty. Following low-type
idles are replaced by high-type idles, conserving the fraction of high-priority
bandwidth. In the same manner low- and high-priority idles are restored when
a packet is stripped off the ring. There is no precise value for the fraction of
bandwidth for low-priority transactions, because this would require a distri-
buted accounting scheme. By avoiding this, all the necessary information can
be encoded in the idle symbols.

To distinguish between the two priority classes, the node has to maintain
an estimation of the ring priority. This is the highest priority value among
the messages in the ring or with the intention to enter it. It is easy to figure
out when the estimation of the ring priority has to be increased. By taking
the maximum priority (0 to 3) of all observed packets in a ring or bypassing
a node, an approximation can be transmitted in idles (alias for idle symbols)
and stored in the nodes. A more difficult problem is decreasing this estima-
tion, especially when removing a packet with the actual ring priority. Then,
it is not clear to which value the ring priority should be reduced. Possibly
more packets with the same high priority are present. The solutions based
on the fact that the combination of a packet and its echo passes all nodes
in the ring. Together, all present requests can be observed. Therefore, in the
header of every packet the maximum priority of all passed nodes is computed.
This result is put into the echo; in another field of the echo the maximum
priority of all nodes the echo passes is computed. If the echo is stripped off
the ring, it has an up-to-date estimation of the ring priority which is put into
the following idles until a new packet or echo passes this node.

In summary, the idle symbols consist of the following fields:

estimate of
ring priority

allo-
cation
count

circu-
lation
count

low-go high-go type age

Since they are too short to be protected by a CRC checksum like all other
packets, they consist of two halves where one is the Boolean negation of the
other.

The low-go and high-go bits characterize free bandwidth sections. A cer-
tain amount of idles has to be present on the ring without offering allocatable
bandwidth to allow compensation of differing link speeds. These are distin-
guished by the type bit. The remaining bits are described later.

5. SCI Protocols and Flexible Switches 113

5.4.3 Time-Out Determination

The protocols for bandwidth allocation and queue allocation are not totally
independent of each other. As pointed out, the bandwidth allocation protocol
provides a time-out criterion for the queue allocation. It works as follows. A
responding node needs the information that all other nodes in the ring have
had a chance to transmit a request. This is equivalent to the fact that an idle
with allocatable bandwidth has completed a round.

The method applied in SCI to check this consists of extremely simple
elementary operations, yet it is effective. The ‘allocation count’ bit contained
in every idle symbol is inverted in one selected node, the ‘scrubber’. Hence,
there is always2 at least one point in the ring where two adjacent idles (may
be separated by data packets) have different allocation count bits. Of course
this pair cycles through the ring and can be easily observed in every node. The
nodes store the most recently received allocation count bit. If they are not
allowed to send packets into the ring—regardless whether there is a waiting
packet or not—the node puts the stored allocation count bit into the idle
symbols ignoring the currently received one. In this manner, any differences
in the following allocation counts are destroyed. These differences are used
by a responder to generate the time-out for outstanding state A or state B
requests. To really ensure this, the state will only be left if four such changes
are observed.

In the same way the ‘circulation count’ allows detection of missing echoes;
it gives nodes the possibility to know when the time a symbol needs to make
one round on the ring has passed. Since an echo packet is transmitted in
place of the request or response packet it belongs to, a lost echo packet can
be identified securely.

Altogether the protocols can be implemented by relatively inexpensive
building blocks. In hardware terms the most expensive parts are the buffers
(receive and send buffers, at least two of them are necessary, and bypass
buffer). Since these parts are found in every SCI application it is reasonable
to implement them as one design, e.g. an integrated circuit. The demands
on such a unit go beyond the link protocols and will therefore be explained
separately in the next section.

5.5 Network Interface

SCI interfaces can be applied to a wide range of applications, e. g. memory
controllers or host interfaces. There is a considerable common hardware effort
for implementing the physical interface, the buffers and protocol engines,
justifying the design or production of a separate unit. This has happened on

2 There may be one cycle where this is not true, but in the next step the property
is fulfilled again.

114 A.C. Döring et al.

the market in the past few years and a vital development of chips and design
macros can be observed. Though driven by the high-end computer market,
a migration to the intended low-cost region can be observed. In this section
the general requirements and existing products of basic building blocks for
making SCI interfaces are discussed.

5.5.1 Requirements

The basic ring operation requires the existence of the bypass buffers. It is ob-
vious from the flow control protocols that every node needs at least a receive
or a send buffer. For nodes which act as requesters as well as responders,
separate send and receive buffers for both types of packets are needed, i. e.
altogether at least four buffers. Of course all the finite automata for the pro-
tocols (see Sections 5.3 and 5.4) have to be implemented, but they require a
comparatively small hardware effort.

An especially critical aspect is the physical interface. It incorporates the
line drivers and receivers which are amplifiers with a precisely defined delay
and electrical behavior. For the receiver the crossing of a clock boundary
(received clock to internal clock used also for transmission) at a very high
rate must be implemented.

An aspect on the ring-side of the interface that has not yet been covered is
addressing. As noted in Section 5.2, SCI packets carry a 16-bit node address
(‘target id’) of their destination. For the network interface of the destination
it is therefore simple to decide whether a certain packet is aimed for it or
not. In this case, the node knows that it is the responder with regard to this
packet and it can apply the according protocols. For a network interface in a
switch this time-critical decision is harder to make. Whether a packet has to
be taken off the ring depends on its further path through the network. This
decision is even harder for echo packets, because the network interface has
to consume those echo packets that belong to packets it has injected into the
ring. To ensure this, the targetId and the transactionId of the echo have to
be checked. This operation is equivalent to a lookup in a table addressed by
the contents, i. e. an associative memory (sometimes abbreviated CAM).

It is interesting to see in which way existing products have implemented
the SCI standard. A brief overview is given in the next subsection.

5.5.2 Products

Meanwhile a certain number of chips or design macros are available, some
of them are sold only as part of systems like the cache controllers in the
Data General series [6]. Though some of the designs are already in the third
generation (e.g. Dolphin LC-2 [11]), there has been no one supporting all
SCI features, e. g. ‘unfair-capability’. A striking fact is the used technology
and the performance that has been reached. While the first hardware im-
plementation of parts of an SCI interface (a test chip by IBM) required 0.5

5. SCI Protocols and Flexible Switches 115

μm BiCMOS technology, the latest Dolphin/LSI chips can be produced in a
standard CMOS process (0.5 μm, 500 MByte/s). This demonstrates the gro-
wing design experience for SCI specific problems. Sequent [26] uses a GaAs
device manufactured by Vitesse [27] with a link bandwidth of 1 GByte/s.
The Interconnect Systems Solutions (ISS) SCI LinCChip-8 concentrates on
low system cost by applying only 8 data wire pairs (10 wire pairs total) and
a high transmission clock. ISS also sells an ASIC macro for integration into
custom chips. With a 0.5 μm CMOS process, ISS claims to reach a link speed
of 100 MByte/s.

It is interesting to observe a common feature of all known SCI interface
units: Their backside interface is a 64-bit wide bi-directional bus. This is in no
way implied by the SCI standard. But the requirements for high bandwidth
and moderate frequency at the connections and the restriction of packaging
(LC-2 has a 225 pin ball grid array packet) have led to this common solution.

The SCI interface units are valuable for the construction of stand-alone
SCI components, for network adapters, or for switches. However, the require-
ments for routers are special and strongly influence the overall performance
of an SCI system. Therefore, the next section will go into detail on this topic.

5.6 Routers

An SCI router (synonym for switch here) is a network internal node that
connects two or more rings or routers. It affects the speed of the network,
its versatility, expandability and the usability in real-time systems, or mul-
ticomputers with coherent distributed shared memory. Therefore, the design
of routers bears a lot of challenges.

5.6.1 Requirements

The demands on networks imply demands on routers. Especially the basic
expectation that the network transports all packets within a finite time requi-
res the handling of problems like deadlocks or lifelocks. A substantial part of
network latency and network bandwidth is contributed by routers. In detail
the demands are:

– The time from the entry of a packet (first bit arrives) at one interface
until it starts leaving the router (again first bit) on the next ring is called
router latency. Similarly, the time a packet needs to pass the router when it
stays in the same ring is the bypass latency. These terms are distinguished
because the second figure is normally much smaller. Both should be as low
as possible.

– The second important measure is the overall bandwidth that can be sup-
ported by the switch. It is the total amount of data that can flow through
the router simultaneously. This figure has to be large as it limits system
performance in high-load situations.

116 A.C. Döring et al.

– A problem of networks with switches in general are deadlocks. A deadlock
is characterized by a set of messages which cyclically wait for each other
on common resources like buffers or links. For SCI this means that some
routers are not able to empty their receive queues since the packets cannot
be transported to the next ring because all send buffers are full. If the
progress within this next ring depends on the router under consideration,
none of the affected messages will ever proceed. To avoid this, special means
for controlling the buffer dependencies are needed.

– Another issue is reliable operation of the network. The router should be
robust against transient errors like misguided packets and the failure of
other routers or rings in the network. This property refers to fault tolerance
and implies methods to adapt to fault situations by guiding messages on
detours to their destinations.

– An additional property concerns the application for example in vehicles or
airplanes: real-time behavior. This means that some messages have a strict
time limit concerning their arrival. An extension of the SCI standard for
this class of problems is under development.

– The performance of the network can be considerably improved if the choice
among several usable paths incorporates the load situation of parts of the
network (adaptivity). In this manner the traffic can be balanced and local
overloads (“hot spots”) can be resolved quickly or can be avoided. This
requires capturing, distributing, and evaluating of load information.

– If the routers themselves support cache coherency protocols, shared memory
systems may scale much better. This gave reason to consider extending the
standard [21].

– For optimizing application mapping, data about the load distribution of
the network and the performance of the individual rings are highly de-
sirable. This implies that the routers have to be able to measure actual
load and transmit this information to an appropriate node (performance
monitoring).

– In workstation clusters or in automation systems the requirements change
frequently. To meet the special demands by different message occurrence
patterns and changing network structure, flexibility of the router is requi-
red.

How far these requirements are met is mainly determined by the architecture
of the router.

5.6.2 Products and Challenges

Information on existing SCI routers is rare, currently there seems to be no
one-chip solution on the market. For economical reasons the routers consist of
several integrated circuits. Among them are the SCI interface chips described
in Section 5.5.2.

5. SCI Protocols and Flexible Switches 117

Figure 5.3 illustrates the logical architecture of a router [13]. It consists
of several network interface chips connected in a bus-like structure. This so-
lution is supported by the backside interface of the used Dolphin chip [2]
already containing bus arbitration logic. Thus, no further hardware is requi-
red. The frontside interface is attached to the ring and uses bypass FIFOs.
This architecture leads to a low price but limits the router degree. This is
caused by the central bus which cannot provide enough bandwidth for a large
number of ring interfaces.

Fig. 5.3. Structure of a simple SCI switch

Using other central connection methods, e. g. a crossbar, overcomes this
bandwidth restriction. However, the use of standard SCI interface chips still
restricts the power and flexibility of the router because of the separation of
the ring interfaces.

In comparison to other network technologies, SCI routers have a remar-
kably high bandwidth and low latency. For small networks the choice of an
appropriate topology is not critical. Deadlock avoidance is provided by fixed
path determination, thus excluding adaptivity. Cache coherence, real-time
traffic support, performance monitoring, and fault tolerance are not suppor-
ted.

5.6.3 Flexible Router

For future systems the routers have to fulfill a wide range of requirements.
Even the individual applications may put different demands on the network
in the same system. But in many applications the structure of the system
changes frequently. In such an environment a fixed router would only serve
some applications well. For many other applications important demands like
time bounds or bandwidth will not be met even with such a high-performance
physical layer like the one of SCI.

To avoid the construction of many different routers for these demands a
router is needed that can be programmed to suit a broad range of applicati-
ons. Clearly, as it cannot execute a sequential program to route a message, a
much faster method is required.

118 A.C. Döring et al.

From the complicated and large area of design aspects for flexible routers
only some (strip-off decision, data path, main routing decision) are shown
and for two of them solutions are discussed (Sections 5.6.4 and 5.7).

5.6.4 Strip-off Decision

As pointed out in the introduction of the network interfaces (Section 5.5),
an important problem for the design of the router is the decision whether to
strip off a packet or not. The models implemented so far use either some kind
of mask and compare operation or a table.

Mask and compare (Figure 5.4) extracts a part of the 16-bit target ad-
dress targetId and compares it to a given value. Current implementations
do this several times (four times in the example) to gain more flexibility.
The configuration of the example routing decision consists of 16-bit registers
mask[i] and compare[i] (i=0..3). In hardware the expression is fast and requi-
res little effort: it is just a special notation of the widely used PALs, where
the individual rows in Figure 5.4 are the product terms.

Strip off := ((targetId AND mask[0]) = compare[0]) OR
((targetId AND mask[1]) = compare[1]) OR
((targetId AND mask[2]) = compare[2]) OR
((targetId AND mask[3]) = compare[3]) ;

Fig. 5.4. Mask and compare operation

To find out whether a packet should leave the ring at this router, table
look-up is another possible method. Since a table with direct access from
the target address would be rather large, a selection of parts of it, e. g. high
and low byte, is applied. That means a table of 256 bits is accessed with one
byte of the targetId; the table content specifies whether the packet is to be
taken off the ring. Though this increases the range of topologies, the strip-off
decision supports all networks with less than 257 nodes and some others with
more nodes.

In order to support additional features like fault tolerance or adaptivity,
the decision has to be much more powerful. Hence, the flexibility of this
operation strongly influences the overall capabilities of the router.

If the router or a ring breaks, the ring topology normally loses its regula-
rity. Of course not all messages are affected. Thus the function for strip-off for
a given message is complicated in some nodes, in others it is comparatively
simple. To take this into account in the following, a new scheme is introdu-
ced. It takes a variable amount of time in terms of clock cycles. Note that
the clock in this context is at the rate of the link frequency, e. g. 125 MHz,
which means that the individual steps have to be completed in less than 8
ns.

5. SCI Protocols and Flexible Switches 119

Such a design is a compromise between speed and flexibility. Reflecting a
compromise of a low bypass latency and the coverage of a large fraction of
practically relevant problems, we propose the following.

Four decisions are started in parallel (Figure 5.5). While A takes only one
cycle, B and C have two cycles and the most complicated decision (D) has
to be completed after three cycles. The decisions differ in the aspects they
consider. The first unit takes only target and source addresses into account,
while the second one regards fault-tolerance aspects as well. The third unit
considers only adaptivity aspects and packet header information. Finally, the
fourth unit has to cover all aspects (fault-tolerance, adaptivity and packet
specification). The first three decisions result in one of three outcomes: ‘strip
packet off the ring’, ‘leave packet in ring’, or ‘don’t know’. The configuration
of the decision units has to ensure that the two simultaneous results of the
second and third decision are not contradictory. If one of the faster decisi-
ons comes to a result other than ‘don’t know’, the outcome of the others is
ignored.

�
A(Decision by Location)

B(Adaptive Decision)

C(Fault-Tolerant Decision)

D(Fault-Tolerant and Adaptive Decision)

Clock Cycles 1 2 3

Fig. 5.5. Flexible strip-off decision

Details about the implementation—especially of the decision unit A—can
be found in [10].

5.6.5 Routing Decision and Topology

A stripped packet has to be put into an appropriate output ring. That means
the router has to determine the next section of the packet’s path through the
network from the header (targetId, sourceId, command field). Of course, a
proper strip-off decision (see Section 5.6.4) is already part of this problem,
since it decides for one ring whether it is to be used or not. This strip-
off decision only takes one message into account, while the ‘main’ routing
decision in the router has to take care of other messages, at least to avoid
deadlocks, to regard priorities (e. g. for real-time behavior), to ensure fair
progress for all messages, and for adaptivity. Thus, this decision is quite
complicated and has the major burden of the flexibility. The various facets
can be divided as follows:

120 A.C. Döring et al.

– Deadlock prevention and fault tolerance inhibit the use of certain outputs
or buffers. In some cases the occupation of output buffers in presence of
other messages has to be checked.

– Purposiveness (routing towards destination) strongly favors some outputs
because they provide progress for a packet.

– Scheduling resolves the conflicts for common resources like interface buses.
– Adaptivity provides dynamic weights on packets, output links or combi-

nations thereof, giving an approximation as to which decision seems to
contribute to a good overall performance. For instance, it may estimate
the delay for the transmission of the message to the next appropriate rou-
ter on the outgoing links from current transfer behavior, link priority, and
packet size.

– Furthermore, stale packets in buffers have to be identified and discarded,
i. e. the time of death for all packets in buffers has to be observed over
time.

These decisions represent complex algorithms, requiring an appropriate de-
scription method which is introduced next.

5.7 Rule-Based Routing

As software cannot be used to execute routing algorithms, special hardware
is required. These hardware structures have to be configurable in order to
implement various routing algorithms. The generation of the configuration
data from the high-level algorithm requires an appropriate abstract descrip-
tion method. Since traditional hardware description languages do not offer
enough abstraction, a new method is needed. This was the starting point of
the RuBIN project (Rule-Based Intelligent Networks). Its main approach is
the basis for this section. Originating from knowledge-based systems in the
area of artificial intelligence, a rule-based description method is used. The
rules used have the simple IF <condition> THEN <action> form. This
combines the advantages of being abstract, well-defined, intuitive and can be
mapped to a hardware structure for fast execution. For a detailed description
see [5, 8, 9].

The basic idea is that routing can be characterized by many distinct cases,
which can be recognized by few conditions. Each case requires some simple
actions that can be carried out quickly. The notion of rules describes these
cases well, see [10] for a complete example. One rule looks like this:

IF link state(1) = ok AND
packet.targetId MOD 8 = 1 AND
out queue(1) < 2

THEN insert packet <- 1;

5. SCI Protocols and Flexible Switches 121

An arriving packet is checked whether the output 1 is in order (link state
is ok) and not too heavily loaded (i. e. its output queue contains fewer than
two packets) and the packet goes in the right direction (using the lowest three
bits of the target id). If all conditions are fulfilled, the rule is applicable and
the conclusion is executed. In this case the result instructs the hardware to
insert the packet into ring 1.

Every rule uses the keywords IF and THEN in order to mark the two parts,
premise and conclusion. While the premise is a predicate logic expression
characterizing the associated case, the conclusion lists all actions for this
case. The complete description of an algorithm includes several sets of such
rules. For fast execution the rule base is translated into table entries (one per
rule). Hence, the processing of a rule base can be done in three steps:

1. Evaluate the basic logic terms from the premises of the rule set in parallel.
For typical routing algorithms, e. g. [7], these are between 5 and 15 terms
like comparisons and simple arithmetic.

2. Calculate an index into a table for selecting the right rule. This can be
done by linear combination, concatenation, etc.

3. Look up the conclusion in a table and execute all its commands in parallel.

Note that no sequential search is performed. Normally the commands are
of the kind ‘increment a variable’ or ‘set up a connection for the packet’. In
addition there can be more than one rule base. These bases are executed con-
currently driven by events like arrival of a packet. This temporal management
is also part of the rule-based description.

A tool, namely the rule compiler, is used to translate the abstract descrip-
tion, map it onto the hardware structures and generate the programming
data (contents of the table) of the router. A more sophisticated example for
the rule based description of the strip-off decision can be found in [10]. To
evaluate the performance in hardware, an implementation of a fairly com-
plicated routing algorithm was done using FPGA technology. It turned out
that it takes 50 ns. It is clear that the application of ASIC technologies al-
lows a much faster implementation. With the same technology, FPGAs are
usually 10 times slower than a dedicated ASIC. However, the speed difference
is smaller for integrated memories and they are part of the rule interpreter.
For the much simpler strip-off decision we investigated an implementation
that reminds of a programmable array logic device (PAL). These devices are
currently widely used and reach on-chip delays well under 5 ns.

5.8 Conclusion and Outlook

Flexible and cheap switches are essential for exploiting the benefits of SCI
in large network configurations. This chapter presented design and imple-
mentation aspects of such switches, which use a rule-based approach. Their

122 A.C. Döring et al.

specific requirements were derived from analyzing the SCI protocols. Our
rule-based approach combines a high-level description of routing algorithms
with an efficient implementation method.

SCI has been an ambitious project from its beginning. Since especially
at the time of the standardization process there were no comparable deve-
lopments on the market, the standardization could apply the best methods
for the arising problems regardless of compatibility issues. Only recently a
proprietary product with very similar properties and techniques [25] was in-
troduced; however, superior SCI products are available. The visions of the
designers [14] have not been fully achieved, yet the demand for a universal fast
interconnect for applications like interfacing peripherals to a PC, workstation
clustering, or high-end parallel computers is large.

Acknowledgment

This work was sponsored by the German Research Council DFG (MA 1412/3)
in cooperation with SFB 376 ‘Massive Parallelität’ at the University of Pa-
derborn, Germany.

References

1. H. Ahmadi, W.E. Denzel. A Survey of Modern High-Performance Switching
Techniques. IEEE Journal on Selected Areas of Communication, Vol. 7, No. 7,
pages 1091–1103, 1989.

2. K. Alnes. Dolphin’s Multiprocessor SCI Interfaces for Clusters and SMP Sy-
stems. Dolphin Interconnect Solutions, 1995.

3. D. Anderson, D. Shanley. PCI System Architecture. Addison Wesley, 1995.
4. N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic,

W.-K. Su. Myrinet: A Gigabit-per-Second Local-Area Network. IEEE Micro,
Vol. 15, No. 1, pages 29–36, 1995.

5. W. Brockmann, T. Kosch, E. Maehle. Rule-based Routing in Massively Parallel
Systems. Proc. 4th Euromicro Workshop on Parallel and Distributed Processing
- PDP’96, pages 154–161, IEEE Computer Society Press, 1996.

6. R. Clark. SCI Interconnect Chipset and Adapter: Building Large Scale Enter-
prise Servers with Pentium Pro SHV Nodes. White Paper, Data General Cor-
poration.
http://www.dg.com/about/html/sci interconnect chipset and adapter.html.

7. C.M. Cunningham, D. Avresky. Fault-Tolerant Adaptive Routing for Two-
Dimensional Meshes. Proc. First Int. Symposium on High Performance Com-
puting Architecture, pages 122–131, IEEE Computer Society Press, 1995.

8. A.C. Döring, G. Lustig, W. Obelöer. The Impact of Routing Decision Time
on Network Latency. Proc. 4th PASA Workshop on Parallel Systems and Algo-
rithms, pages 67–83, World Scientific Publishing, Singapore, 1997.

9. A.C. Döring, G. Lustig, W. Obelöer, E. Maehle. A Flexible Approach for a
Fault-Tolerant Router. Proc. Symposium on Parallel and Distributed Processing
– Workshops (Workshop on Fault-Tolerant Parallel and Distributed Systems

5. SCI Protocols and Flexible Switches 123

FTPDS 98), Lecture Notes on Computer Science 1388, pages 693–713, Springer
Verlag, 1998.

10. A.C. Döring, W. Obelöer, G. Lustig, E. Maehle. Flexibility for SCI-Networks
with Rule-Based Routing. Proc. SCI Europe, pages 5–11, Cheshire Henbury,
UK, 1998.

11. Dolphin Interconnect Solutions. Link Controller LC-2 Specification. Data
Sheet, Dolphin Interconnect Solutions, 1997.

12. P. Fraigniaud, C. Gaviolle. Interval Routing Schemes. Technical Report RR94-
04, Laboratoire de l’Informatique du Parallèlisme, Ecole Normale Supèrieure de
Lyon, 1994.

13. P. Gustad. A low cost CMOS 500 MByte/sec SCI Link Controller. Symposium
on High Performance Interconnects, Invited Talk, 1996.

14. D.B. Gustavson. The Scalable Coherent Interface and Other Related Standards
Projects. IEEE Micro, Vol. 12, No. 1, pages 10–22, 1992.

15. Hewlett-Packard Company, Convex Division. Exemplar Architecture S-Class
and X-Class Servers. First Edition, 1997.

16. IEEE. ANSI/IEEE-Std. 1596-1992 Scalable Coherent Interface (SCI). IEEE,
1993.

17. IEEE. ANSI/IEEE-Std. 1355-1995 Heterogeneous Interconnect (HIC). IEEE,
1995.

18. M. Ibel, K.E. Schauser, C.J. Scheimann, M. Weis. High-Performance Cluster
Computing Using SCI. Symposium on High Performance Interconnects, pages
7–19, 1997.

19. D.V. James, A. Nakamura, A. Ludke, D. Scheel. Draft—Control and Sta-
tus Register (CSR) Architecture for Microcomputer Buses. Available at
ftp.scizzl.com/p1212.r/P1212.pdf, 1998.

20. V. Karamcheti, A.A. Chien. Do Faster Routers Imply Faster Communication?
International Workshop on Parallel Computer Routing and Communication,
pages 1–15, Springer Verlag, 1994.

21. S. Kaxiras. Kiloprocessor Extensions to SCI. Proc. International Parallel Pro-
cessing Symposium, pages 166–172, IEEE Computer Society Press, 1996.

22. M. Katevenis, S. Sidiropoulos, C. Courcoubetis. Weighted Round-Robin Mul-
tiplexing in a General-Purpose ATM Switch Chip. IEEE Journal on Selected
Areas in Communication, Vol. 9, No. 8, pages 1265–1279, 1991.

23. SCALI. The HS Series. Datasheet, 1997.
24. SCIzzL (David Gustavson). Compare SCI and ATM, FibreChannel, HIPPI, Se-

rialbus, SerialExpress, SuperHIPPI. White Paper, Scalable Coherent Interface
Local Area MultiProcessor Users, Developers, and Manufacturers Association,
1997. http://www.SCIzzL.com/SCIvsEtc.html.

25. Sebring Systems. SRC 3266 Sebring Ring Connection. Data Sheet, Sebring
Systems, 1997.

26. Sequent. Sequent’s NUMA-Q SMP Architecture. 1996.
27. Vitesse Semiconductor Corporation. Compliant Link Controller 1 GByte/sec

SCI VSC7201a. Datasheet No. G52141-0, Vitesse Semiconductor Corporation,
1996.

28. Bin Wu. The Applications of the Scalable Coherent Interface in Large Data
Acquisition Systems in High Energy Physics. PhD Thesis, University of Oslo,
1996.

6. SCI Rings, Switches, and Networks for Data
Acquisition Systems

Harald Richter1, Richard Kleber1, Matthias Ohlenroth2

1 Institut für Informatik, Technische Universität München
D–80290 München, Germany
email: richterh@informatik.tu-muenchen.de

2 Fakultät für Informatik, Technische Universität Chemnitz-Zwickau
D-09111 Chemnitz, Germany

6.1 Introduction

In plasma-physical fusion devices, the ionized hydrogen isotopes Deute-
rium and Tritium are fusing to helium ions, provided that they can be
kept long enough and dense enough at very high temperatures (typically
� 1 million degrees), thereby delivering energy according to the equation
E = (mDeuterium/Tritium − mHelium) × c2. To control the plasma confine-
ment and to get information about its physical behavior, a high-speed and
high-volume data acquisition system is needed for the on-line and off-line mo-
nitoring and evaluation of measured plasma and fusion device data. State-
of-the-art experiments produce approx. 100 MByte of measurement values
during a 10 second experimental period. Future plasma devices will deliver
one to two orders of magnitude more data in the same time interval, while ad-
ditionally operating continuously in a steady-state mode. This imposes high
requirements on the real-time behavior, i.e., the transmission latency, as well
as on the bandwidth of the underlying communication network that is part
of the data acquisition system. A low and guaranteed latency is very impor-
tant for the closed-loop feedback systems of the fusion device that keep the
burning plasma hot, stable, and away from physical material.

Potential candidates for the communication network of such a future data
acquisition system are Fiber Distributed Data Interface (FDDI), Gigabit
Ethernet, Asynchronous Transfer Mode (ATM), and Scalable Coherent Inter-
face (SCI). Among them, SCI seems to be especially attractive because of its
forward progress guarantee, prioritized bandwidth allocation and extremely
low latency. For the same reasons, also other high-end physical experiments
such as the “Large Hadron Collider” at CERN are considering SCI as the
primary communication medium [3, 4, 5, 20, 30]. In industry, SCI gains more
and more importance since large computer manufacturers are offering off-
the-shelf SCI-based products for cluster computing [22, 7]. However, for data

† Partially reprinted from: H. Richter and M. Ohlenroth: Data acquisition with the
SCINET, a scalable-coherent-interface network, Fusion Engineering and Design,
vol. 43, pp. 393–400, Copyright 1999, with permission from Elsevier Science

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 125-149, 1999
© Springer-Verlag Berlin Heidelberg 1999

126 H. Richter, R. Kleber, M. Ohlenroth

acquisition purposes commercially available SCI products are very rare, and
for high-end applications no off-the-shelf solutions are provided since this
market segment is too small. A lot of research remains to be done in this
field [23, 25, 31, 21, 19].

One research project is SCINET, the goal of which is to investigate the ap-
plicability of SCI networks for data acquisition systems in large-scale fusion
reactor experiments. SCINET investigates how data acquisition computers
can be efficiently connected to each other and to sensors and actuators by
means of SCI, which topological structures large-scale networks should have,
and the bandwidth and latency that can be expected. Therefore, this chapter
first presents the results of SCI test beds that were established as a sam-
ple SCI-based data acquisition system. The test beds demonstrate up to 45
MByte/s of throughput and < 5μs latency for end-to-end data transfers. Se-
cond, it is shown how commercial SCI switches can be used more efficiently
resulting in more than sevenfold higher throughput and half the latency at
the same costs. Third, SCI-based Banyan topologies are proposed which are
highly efficient for multi-port switches in parallel computers, clusters of work-
stations, and local area multiprocessors. The networks have up to four times
the performance in terms of throughput and latency, as compared to a con-
ventional SCI-based multistage network, while requiring only one fourth of
its costs. The prerequisite for the improvements is that some data locality is
present in the traffic patterns between senders and receivers. All results were
achieved by means of our SCINET simulator.

The chapter is organized as follows. In Section 6.2, the basic requirements
of a data acquisition system for a fusion reactor experiment are explained.
In Section 6.3, the two SCI test beds used for benchmarking are described.
Section 6.4 shows the performance results of the test beds which indicate the
principal suitability of SCI for data acquisition systems in plasma physics.
Section 6.5 is devoted to SCI switches as the basic components of large-scale
data acquisition systems. Section 6.6 explains and validates (by means of si-
mulation) that SCI switches can be used more efficiently. Section 6.7 deals
with multistage networks; two new cost-efficient Banyan topologies are propo-
sed that can replace conventional solutions. In Section 6.8, simulation results
for the new topologies are given. The chapter concludes with a summary in
Section 6.9.

6.2 SCI-based Data Acquisition Systems

Data acquisition is a real-time task with reaction times determined by the
sampling rates of the probing devices that collect the measurement values.
Each data acquisition system can be evaluated by six key parameters:

– The probes’ data rates in terms of samples per second. This value determi-
nes mainly the technology that has to be employed. For a fusion reactor,

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 127

data normally need not to be sampled with frequencies higher than 100
MSamples/s per sensor.

– The total number of sensors that have to be read out, maintained, and
operated over a longer period of time (normally 1-2 decades).

– The amount of data collected by the system. For today’s data acquisition
systems, this value lies in the range of 10-100 MByte/s. Future systems will
deliver 1-2 orders of magnitude more data which imposes high requirements
on the database and data mining systems.

– The system’s delay time between sampling and remote storing of the mea-
surement values. This is a crucial factor if any additional feed-forward or
feedback control system has to make use of the measured values because it
determines the time constant, i.e., the reaction delay of the control system.

– The allowable data loss rate of the system. This rate determines the degree
of redundancy that has to be built into the system. Since fusion reactor
experiments are mission-critical, high reliability is required. Thus, the data
loss rate has to be kept significantly lower than in telecommunication sy-
stems, for instance.

– The scalability of the system. Large-scale experiments take about 10 years
to be built and are operated another 10-15 years. This means that their
data acquisition system has to be flexible enough to be expanded over the
years.

In this chapter, throughput and latency of a sample SCI-based data acqui-
sition system are investigated. Data losses are partly evaluated by registering
the error rates that occur on the transmission lines. Other sources of data
loss, for instance those due to buffer overflows, are not considered. The ma-
nagement of the data retrieval and the overall system’s scalability are outside
the scope of this contribution.

SCI is believed to be a proper technology for high-end data acquisition
systems since it has, by construction, guaranteed data delivery, high throug-
hput, low latency and scalability. In the framework of the SCINET project,
a sample acquisition system was implemented to validate this. Throughput
and latency of data transfers from memory to memory were measured by
means of test beds.

6.3 SCINET Test Beds

Two different SCI test beds were set up to enable comparisons of, and to
achieve a higher confidence in, the obtained results. Each system represents
an SCI data transmission ring, comprising two PCs that are connected by SCI
interfaces. For both test systems, commercially available SCI cards from Dol-
phin Interconnect Solutions [11] are used, together with appropriate copper
cabling for the transmission lines.

128 H. Richter, R. Kleber, M. Ohlenroth

In the first system, two 200 MHz Pentium Pro PCs with the 440FX PCI
chip set are employed (GA- 686DX mother board), running the Linux 2.0.30
operating system. The Dolphin boards are controlled by our own device dri-
ver, and also the benchmarks that measure the throughput and latency are
self-developed. The second system comprises two 100 MHz Pentium PCs,
Windows NT 4.0, and the standard FX chip set. Here, device driver and
benchmark software were delivered by Dolphin. In both cases, the response-
less DMOVE64 transaction of SCI was used for all data transfers.

Each interface card is based on Dolphin’s 200 MByte/s Link Controller
(LC) chip [10, 12] that implements the physical layer of SCI, and a PCI
bridge that converts the PC’s PCI bus protocol into SCI packets. On the
card, the PCI bridge and the LC chip are connected internally via a pro-
prietary high-performance bus, the so called B-Link [8]. The LC conforms to
the IEEE interface specification, with the exception that the attached user
device is a PC that is connected via the PCI/B-Link bridge to the SCI in-
terface. The bridge consists mainly of a PCI master/slave building block, a
DMA engine and 8 buffers for read and write transactions, respectively. Fur-
ther components are an address translation cache for the mapping of PCI
to SCI addresses, configuration, control, and status registers, and an inter-
rupt mechanism. The block diagram of the PCI/B-Link bridge is shown in
Figure 6.1. The adapter card is further described in Chapter 3.

P
C

I B
us

B
-L

in
k

Events

PCI
Config

PCI
Master

PCI
Slave

DMA
8x64B
Read
Buffers

8x64B
Write
Buffers

Address
Transla-
tion

Interrupt

Control and Status
Registers

Fig. 6.1. Dolphin’s PCI/B-Link bridge

The bridge is capable of either splitting its buffers in order to support up
to 8 external PCI masters, for read and write, respectively, or of combining the
buffers to allow for eightfold throughput for a single master. The prerequisite
for buffer combining is that PCI data that has to be transferred to the SCI link

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 129

is located on contiguous addresses, and that the control and status registers
of the bridge are properly set.

6.4 Measurement Results

The throughput results shown in Figure 6.2 were obtained for both, remote
read and write transactions between the memories of the Pentium Pro test
bed (system 1). Data transfer took place exclusively between user address
spaces, thus the values represent the real end-to-end data rate. As one can
see, the SCI ring already reaches its maximum throughput at short block
lengths of 256 bytes; at 64 bytes, about half of that can be achieved. Remote
read is significantly slower than remote write, by a factor of 3.5. This stems
from the fact that, for the requester, a remote write transaction is already
finished as soon as its data are stored in the transmit buffer of the PCI/B-
Link bridge. From there on, reliable delivery is guaranteed. In contrast, a
remote read always needs to wait until the requested data is obtained because
of the semantics of the read transaction. Obviously, to achieve maximum
throughput only remote writes should be employed. This means for the data
acquisition system that a “push” strategy should be preferred to “pull”-style
operation. That is, the sensors should on their own write their measured data
to the final destinations after they have received a data-sampling trigger from
those locations, and the remote computers should not read out the probes.
For that reason, only remote write transactions are further investigated in
the following.

.

200 MHz PentiumPro + 440 FX PCI + Linux 2.0.30

0

5

10

15

20

25

30

4 16 64 25
6 1k 4k 16
k

64
k

Block Size [Bytes]

Th
ro

ug
hp

ut
 [M

By
te

/s
]

Remote Write

Remote Read

Fig. 6.2. Throughput on system 1

When one considers the elapsed times of the data transfers vs. the block
size (Figure 6.3), it becomes clear that the setup times to initiate a transfer

130 H. Richter, R. Kleber, M. Ohlenroth

are quite small: < 10μs for both, read and write. That would allow a very
small reaction time of an SCI-based control system. The elapsed times for
remote read (RR) are higher, compared to remote write (RW) due to its
slower transfer rate.

.

.

200 MHz PentiumPro + 440 FX PCI + Linux 2.0.30

1

10

100

1000

10000

4 16 64 25
6 1k 4k 16
k

64
k

Block Size [Bytes]

E
la

ps
ed

 T
im

e
[μ

s]

Elapsed Time RW
Elapsed Time RR

Fig. 6.3. Latencies of remote read and write on system 1

The Pentium-based test bed with the Dolphin software (system 2) shows
a throughput behavior as depicted in Figure 6.4 for comparison; here, only
12 MByte/s can be achieved. Additionally, Figure 6.4 shows how the trans-
fer rate behaves in case that, on top of SCI’s hardware error detection and
correction, a software error check with optional retry of the last sent block is
applied. For both cases (HW correction only and HW+SW correction), the
maximum throughput turns out to be the same, but for the latter it can be
achieved only for large block sizes of > 64 kByte. Without software overhead,
Dolphin’s solution reaches its maximum transfer rate at 64 bytes already. The
latencies for larger block sizes (depicted in Figure 6.5) are in compliance with
the measured throughput. For small blocks, the latency becomes as low as
2-3 μs. Of course, more time is needed (11-12 μs) if additional software error
correction is used.

Dolphin’s device driver allows the combining of the PCI/B-Link bridge
write buffers. As one can see from Figure 6.6 and Figure 6.7, the throughput
scales nearly linearly with 2 and 4 buffers combined. Only the minimum
required buffer size for full transmission speed is doubled each time.

The maximum achievable data transfer rate is 45 MByte/s since with 8
combined buffers saturation effects are showing up (Figure 6.8). Since each
write buffer has a capacity of 64 bytes, the combining of 2 or 4 buffers requires
that at least 128 bytes or 256 bytes, respectively, that are aligned to 64-byte

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 131

1 Stream + 100 MHz Pentium + FX PCI + NT 4.0

0

2

4

6

8

10

12

14

4 8 16 32 64 12
8

25
6

51
2

1k 2k 4k 8k 16
k

32
k

64
k

Block Size [Bytes]

Th
ro

ug
hp

ut
 [M

By
te

/s
]

HW error
correction

SW error
correction

Fig. 6.4. Throughput of 1-stream remote write on system 2

.

1 Stream+100 MHz Pentium+FX PCI+NT 4.0

1

10

100

1000

10000

4 16 64 25
6

1k 4k 16
k

64
k

Block Size [Bytes]

E
la

p
se

d
 T

im
e

 [
u

s]

HW error
correction

SW error
correction

Fig. 6.5. Latencies of 1-stream remote write on system 2

.

2 Streams+100 MHz Pentium+FX PCI + NT 4.0

0

5

10

15

20

25

4 8 16 32 64 12
8

25
6

51
2

1k 2k 4k 8k 16
k

32
k

64
k

Block Size [Bytes]

Th
ro

ug
hp

ut
 [M

By
te

/s
]

HW error
correction

SW error
correction

Fig. 6.6. Throughput of 2-streams remote write on system 2

132 H. Richter, R. Kleber, M. Ohlenroth

.

4 Streams+100 MHz Pentium FX PCI + NT 4.0

0

5

10

15

20

25

30

35

40

45

50

4 16 64 25
6

1k 4k 16
k

64
k

Block Size [Bytes]

Th
ro

ug
hp

ut
 [M

By
te

/s
]

HW error
correction

SW error
correction

Fig. 6.7. Throughput of 4-streams remote write on system 2

boundaries in the PCI address space, are available for transfer. At the latter
block size, maximum throughput is achieved. In the case of combining 8
buffers, bursts of 512 bytes and larger suffer to be transferred at a reduced
speed of only 34 MByte/s. Either the PCI bus, the slow Pentium CPU or some
other limiting factor induced this saturation effect that causes the significant
performance drop.

8 Streams+100 MHz Pentium+FX PCI + NT 4.0

0

5

10

15

20

25

30

35

40

45

50

4 8 16 32 64 12
8

25
6

51
2

1k 2k 4k 8k 16
k

32
k

64
k

Block Size [Bytes]

Th
ro

ug
hp

ut
 [M

By
te

/s
]

HW error
correction

SW error
correction

Fig. 6.8. Throughput of 8-streams remote write on system 2

The latency times for 2, 4, and 8 combined streams are given in Figu-
res 6.9, 6.10, and 6.11, respectively.

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 133

.

2 Streams+100 MHz Pentium+ FX PCI+NT 4.0

1

10

100

1000

10000
4 16 64 25
6

1k 4k 16
k

64
k

Block Size [Bytes]

E
la

p
se

d
 T

im
e

 [
u

s]

HW error
correction

SW error
correction

Fig. 6.9. Latency of 2-streams remote write on system 2

.
4 Streams+100 MHz Pentium+FX PCI+NT 4.0

1

10

100

1000

10000

4 16 64 25
6

1k 4k 16
k

64
k

Block Size [Bytes]

E
la

p
se

d
 T

im
e

 [
u

s]

HW error
correction

SW error
correction

Fig. 6.10. Latency of 4-streams remote write on system 2

134 H. Richter, R. Kleber, M. Ohlenroth

.

8 Streams+100 MHz Pentium+FX PCI + NT 4.0

1

10

100

1000

10000

4 16 64 25
6

1k 4k 16
k

64
k

Block Size [Bytes]

E
la

p
se

d
 T

im
e

 [
u

s]
HW error
correction

SW error
correction

Fig. 6.11. Latency of 8-streams remote write on system 2

6.5 SCI Switches

In addition to commercial SCI products for data transfer between PCs and
workstations, SCI switches [9] were investigated, since they are the prerequi-
site for large-scale data acquisition systems. Switches allow to connect two or
more SCI rings, thereby forming a static or dynamic SCI network. Each SCI
network can be composed of nodes such as computers, processors, memories,
peripherals, routers, bridges, and switches. By proper address management,
a commercial 4-port SCI switch can act as a router, if it is connected with
one port to an SCI node and with the remaining ports to a static network
such as a torus. It can act as a bridge if it is located between adjacent rings
to allow data to pass, and it can be employed to establish multistage net-
works (Figure 6.12). An SCI switch differs in various respects from conven-
tional switches. First, each SCI switch is part of 2 to 4 rings on which data
are unidirectionally transferred. Second, there exists a port-internal bypass
FIFO connecting the in and out terminals of each port to allow a very fast
bypass (< 50 ns). Third, in each port two separate buffers for SCI requests
and responses are available preventing deadlocks caused by cyclic waiting on
resources (Figure 6.13).

In the following, we consider switches according to Dolphin’s implemen-
tation [9]. The transmit and receive buffers of the ports of such a switch are
connected to a high-speed packet bus called B-Link [8], which has a transmis-
sion rate of 600 MByte/s. Inside the switch, the B-Link connects 4 ports, each
of which has a data rate of 500 MByte/s per direction. By this, a high-speed
SCI switch is established. Between any pair of ports, the maximum port rate
of 500 MByte/s can be achieved for unidirectional transfers (either read or
write) as long as the remaining other pair of ports produces no more than
100 MByte/s of traffic. If both pairs simultaneously operate in full duplex

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 135

.

SCI BridgeSCI
Ring 1

SCI
Ring 2

Processor PC

MemoryWorkstation Other SCI Nodes

a)

b)
SCI Router

SCI Swi tch

c)

Fig. 6.12. SCI switches can serve as bridges (a), routers (b), and building blocks
for multistage networks (c)

.

Transmit
Queues

My Echo
(CRC)

Bypass FIFO

SavedIdle

Str ip Elastic
Buffer

(CRC)

B-Link Interface

SCI

Out

SCI

In

Queues
Receive

SCI

Out

SCI

In

B-Link

En
co

d
e

In
s

er
t

M
U

X

R
eq

ue
st

R
es

po
ns

e

R
eq

ue
st

R
es

po
ns

e

a)

b)

Fig. 6.13. SCI switch port (a) and its symbolic representation (b)

136 H. Richter, R. Kleber, M. Ohlenroth

mode, the individual port rate per direction is reduced to 150 MByte/s due
to the B-Link’s bandwidth limitations.

For illustration, Figure 6.14 depicts a block diagram of a 4-port SCI switch
as well as its equivalent representation that will be used later in this chapter.

.

SCI0
In

SCI0
Out

SCI1
In

SCI1
Out

SCI2
In

SCI2
Out

SCI3
In

SCI3
Out

In
SCI0

Out
SCI0

In
SCI1

Out
SCI1

In
SCI2

Out
SCI2

In
SCI3

Out
SCI3

Fig. 6.14. Two equivalent representations of a 4-port SCI switch

6.6 Efficient Use of SCI Switches

Let the throughput T of a switch be the sum of the ports’ throughputs. For a
subsequent comparison with SCI systems, Figure 6.15 shows two simple mul-
tiprocessors (UMA and NUMA variants) that employ conventional switches.

In Figure 6.15(a), the throughput of the conventional switch is assumed
to be Tcon, with Tcon ≤ 2t, where t is the throughput of a single switch port
to which a processor is connected. In the NUMA example of Figure 6.15(b),
every pair of computing nodes can simultaneously communicate with each
other (up to two pairs at the same time), thus pushing the throughput to
T ′

con with T ′
con ≤ 4t. In both cases, the switch-internal transfer capacity

Btr is assumed to be sufficiently large to carry the produced traffic (Btr ≥
T ′

con ≥ Tcon).
With SCI, it is possible to push T ′

con above the bandwidth limit Btr

by using the ports’ bypass FIFOs for additional data transfers. This spe-
cial switch usage will be explained in the following. In Figure 6.16(a), the
UMA architecture of Figure 6.15(a) is upgraded to an SCI switch, and the
bidirectional transmission lines are replaced by SCI ringlets. Now, the total
throughput is TSCI , with TSCI = min{2t, Btr} which is the same as with
conventional switches. This solution is published in the literature [20, 30].
In Figure 6.16(b) however, the processor and memory nodes are coupled dif-
ferently: the SCI ringlets are replaced by long rings connecting a sender, a
switch, and a receiver in one instead of two rings so that no B-Link is in
between.

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 137

P0

P1

Switch

M0

M1

w

r
w

r

w

r
w

r

a)
P: Processor
M: Memory

Conventional

b)

Switch
w

r
w

r

w

r
w

r

P0

P1

M1

M0

P2

P3

M3

M2Conventional

Fig. 6.15. Simple UMA (a) and NUMA (b) multiprocessors based on conventional
switches

Ringlet Connected
4-Port SCI-Switch

M0

M1

P0

P1

R0 R2

R1 R3
R: R ing

a)

b)

Long-R ing Connected
4-Port SCI-Switch

Ring 0

Ring 1

I-P0-O

I-P1-O

I-M0-O

I-M1-O

I: SCI Input
O: SCI Output

Fig. 6.16. SCI switch using B-Link (a) or bypass FIFOs (b) as main data paths

138 H. Richter, R. Kleber, M. Ohlenroth

Here, we obtain throughput T ′
SCI which can become larger than Btr,

provided that some fraction of the data can stay on the ring where it origi-
nated. The reason for higher throughput is that data may enter and leave
the switch through the ports’ bypass FIFOs, so that the B-Link bottleneck
is circumvented.

The prerequisite that T ′
SCI exceeds Btr is that the communication pat-

terns between senders and receivers exhibit some data locality. Data locality
is common to most parallel applications; if not, it can be explicitly forced by
proper allocation of tasks and data structures to computing nodes. In the ex-
ample depicted in Figure 6.17(a), this means that processor Pi(i = 0, 1, 2, 3)
mainly communicates with memory Mi, so that data packets can stay on the
rings where they originated and can travel to the destinations through the
bypass FIFOs.

Ring 0

Ring 1

Ring 3

Ring 2

I-P0-O

I-P1-O

I-M3-O

I-M0-O

I-P3-O

I-P2-O I-M2-O

I-M1-Oa)

I: SCI Input
O: SCI Output

b)

P0

P1

P3
P2

M3’

M0’

M2’

M1’

P0’

P1’

P3’

P2’
M3

M0

M2

M1

Fig. 6.17. Flexibility in the number of nodes by means of long rings

In addition, the latency is reduced since in SCI the intra-ring commu-
nication is faster than the inter-ring communication. Furthermore, from Fi-
gure 6.16(a) to Figure 6.16(b) the amount of required hardware has decreased
from 4 to 2 rings and from a 4-port to a 2-port switch while the performance

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 139

is expected to increase. For larger switch sizes than 4 the same improvement
would be achieved.

Finally, as shown in Figure 6.17(a) and (b), more flexibility with respect
to the number of attachable processors and memories can be obtained by
using long rings that pass through SCI nodes and switches. In the example
of Figure 6.17(a), twice as many processors and memories are coupled to
the same 4-port switch without degradation in performance, as compared to
the ringlet configuration. In the example of Figure 6.17(b), the number of
connectable devices is again doubled. However, in the latter case, the maxi-
mum data rate per processor may be halved. In Section 6.8, the predicted
performance improvements are quantified.

6.7 Multistage SCI Networks

In this section, the long-ring connection technique is applied to multistage
networks comprising 2-port or 4-port SCI switches, in order to construct more
efficient networks. Generally, the most cost-efficient multistage networks are
of the Banyan type [15], since they can be built with the minimum num-
ber of stages. However, Banyans are blocking networks which do not have
redundancy and therefore also no fault tolerance. Typical Banyans are Base-
line, Omega, Flip, Butterfly, Indirect Binary n-Cube, and Generalized Cube
networks [28].

In Figure 6.18(a), the standard implementation of an SCI-based Baseline
network according to [30] is shown: nodes and switch ports of adjacent stages
are connected by SCI ringlets. A functional equivalent but bypass FIFO-based
solution that consists of large toroidal rings is shown in Figure 6.18(b).

In this example, the switch complexity is reduced from 4-port to 2-port
switches. The minimum latency of data to travel from an input to an output
of a network of size N has decreased from L = α log2 N to L′ = β log2 N .
The factor α denotes the time for a packet to cross a switch (usually some
μs), while β is the time to travel through a bypass FIFO (some tens of ns).
Obviously, two orders of magnitude in latency decrease can be expected by
employing long rings instead of ringlets, while halving the switch costs at the
same time.

A disadvantage of the Baseline network of Figure 6.18(b) is that an ad-
ditional permutation wiring is required to connect the memory-out links a–h
with the corresponding processor-in links to obtain closed rings. Fortunately,
by virtue of their topological structure, two of the known Banyans allow a one-
to-one connection from outputs to inputs. These topologies are the Omega
and the Generalized Cube networks. (Their “mirror images”, the Flip net-
work and the Indirect Binary n-Cube, have the same property.) Therefore,
we propose that SCI networks which have bypass FIFOs as their main data
paths should be built according to one of these 4 topologies. In the following,

140 H. Richter, R. Kleber, M. Ohlenroth

.

a
b

c

d

h
g

f

e

P0
P1
P2
P3
P4
P5
P6
P7

M0
M1
M2
M3
M4
M5
M6
M7

P0
P1
P2
P3
P4
P5
P6
P7

M0
M1
M2
M3
M4
M5
M6
M7

a
b

e

f

h
g

d

c

a)

b)

Fig. 6.18. Baseline networks with B-Links (a) or bypass FIFOs (b) as main paths

the networks without permuted wiring from output to input are termed first-
grade optimized. An example of such a network is given in Figure 6.19.

P0
P1

P2

P3

P4
P5

P6

P7

SCI-Ring 0

M7

M0

M1

M2

M3

M4

M5

M6

SCI-Ring 7

SCI-Ring 1

Fig. 6.19. First-grade optimized SCI-based Omega network

First-grade optimized SCI Banyans can be further improved by using s-
port switches with s > 2, which results in additional improvements by a factor
of log2 N/logsN in terms of costs and latency. For example, when s = 4 and
a network size of 16 × 16 is assumed, then 32 ports are necessary to build
up all network switches, while the equivalent first-grade optimized network

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 141

with s = 2 needs twice as many, i.e. 64 ports. Since the port count is the
dominant cost factor of a network, the prize is approx. halved for s = 4. A
ringlet network of the same size and s = 2 would require 128 ports.

If s > 2, we call such a structure a second-grade optimized network. An
example of a second-grade optimized network is depicted in Figure 6.20.
In Section 6.8, the performance of first-grade and second-grade optimized
networks will be compared.

.

I-S12-O
I-S13-O
I-S14-O
I-S15-O

I-S0-O
I-S1-O
I-S2-O
I-S3-O

.

.

.

I-D12-O
I-D13-O
I-D14-O
I-D15-O

I-D0-O
I-D1-O
I-D2-O
I-D3-O

.

.

.

Fig. 6.20. Second-grade optimized SCI-based Omega network

6.8 Simulation Results

A first suite of simulations was conducted to evaluate the performance of
a single 4-port SCI switch, which uses ringlets to connect processors and
memories, and to compare that solution with a switch based on long rings
(Figure 6.16). The performance metrics are throughput, latency, and packet
losses. To pinpoint the performance discrepancy between both concepts, 100%
data locality was chosen, i.e. processor Pi communicates exclusively with
memory Mi, i = 0, 1. In practice, the locality will be lower, but as long as
there is some data locality, a performance improvement will be visible.

For all simulations, the DMOVE64 SCI command was chosen, and all
processors are configured to simultaneously send DMOVE64 packets at the
same rate. The input data rate to the switch was decided to be deterministic,
no random traffic is applied.

In the following graphs, the achieved data throughput of the switch (net
output rate) versus the generated input traffic (gross input rate) are shown.

142 H. Richter, R. Kleber, M. Ohlenroth

The input is varied from 0 to 500 MByte/s per processor, which is also the
maximum ring speed, to study the input/output behavior of the switch. The
data packets carry 64 bytes of payload with an overhead of 16 bytes for header
and trailer. Together with additional 4 bytes for idle symbols, the ratio of
payload length to raw length is 64/84. The memories are assumed to have
an access time of 40 ns for each block of 64 bytes. The link delays between
processors, switch, and memories are set to be 1 ns each. The remaining
timing parameters for all SCI ports are 20 ns address decoder delay, 48 ns
bypass FIFO delay, 106 ns FIFO to B-Link delay and 82 ns B-Link to FIFO
delay. All ports are modeled to have input and output buffer space for 4
request and response packets each. By this parameter set, the simulations
are compliant with the latest SCI Link Controller (LC-2) of Dolphin [12].

The achieved throughput rates of a ringlet and a long-ring connected
4-port switch are shown in Figure 6.21. With ringlets, the switch already
saturates at 250 MByte/s raw input rate, delivering 176 MByte/s output
payload. At the same input rate, the packet losses become significant and
eventually reach a value of 585 MByte/s at 1 GByte/s gross input rate.
A packet loss occurs each time a new packet is generated that cannot be
injected into the ring by a sender’s SCI interface; this happens when the ring
is still occupied by transferring previous packets and the transmit buffer of
the interface is full. Because of the constant rate with which data are issued
by the processors, the ring has to accept packets in real time which is only
possible up to a certain speed. Above that limit, packets are lost.

.

0

100

200

300

400

500

600

700

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Gross Input Rates [MByte/s]

N
et

 O
u

tp
u

t
R

at
es

 [
M

B
yt

e/
s]

Ringlet Payload
Long-Ring Payload
Ringlet Data Loss
Long-Ring Data Loss

Fig. 6.21. Throughput and packet losses of ringlet and long-ring connected 4-port
SCI switches with two senders and receivers

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 143

The latency behavior of a ringlet-connected 4-port switch is depicted in
Figure 6.22. The time from initiating a DMOVE64 packet to storing it in its
destination shows a value of 2344 ns as long as the latency saturation point
of 200 MByte/s is not reached. The latency increases and becomes non-
deterministic above that point, assuming values between 7362 ns (minimum)
and 12797 ns (maximum).

 .

0

2000

4000

6000

8000

10000

12000

14000

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Gross Input Rates [MByte/s]

La
te

nc
y

[n
s]

Minimum Packet Latency
Mean Packet Latency
Maximum Packet Latency

Fig. 6.22. Latency of ringlet-connected 4-port SCI switch with two senders and
receivers

The long-ring connected switch coupling two senders and receivers be-
haves much better: it saturates at 900 MByte/s gross input rate with 682
MByte/s output payload, and at 1 GByte/s input rate it has 80 MByte/s
packet losses. Below the saturation point, a latency of 1127 ns can be expec-
ted. Compared to the ringlet-case, the throughput has increased by a factor
of 3.9 while the latency has decreased by 52%. However, above the satura-
tion point, latency not only becomes non-deterministic but it also jumps by
two orders of magnitude, varying between 75 μs and 301 μs (Figure 6.23).
Obviously, for 100% data locality the long-ring connected switch behaves
much better than a conventionally ringlet-coupled one, but it should not be
overloaded.

If all 4 ports of the switch are coupled with long rings to 4 processors and
memories, as depicted in Figure 6.17(a), a linear performance improvement
compared to 2 processors and memories is achieved. As shown in Figure 6.24,
the switch saturates at 1800 MByte/s gross input rate with 1365 MByte/s
output payload, and it has 160 MByte/s packet losses at 2 GByte/s. With
1127 ns, the latency below the saturation point is identical to the case of
2 processors and memories. Identical latencies are also obtained above the
saturation point.

144 H. Richter, R. Kleber, M. Ohlenroth

 .

0

50000

100000

150000

200000

250000

300000

350000
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Gross Input Rates [MByte/s]

La
te

nc
y

[n
s] Minimum Packet Latency

Mean Packet Latency
Maximum Packet Latency

Fig. 6.23. Latency of long-ring connected 4-port SCI switch with two senders and
receivers

 .

0

200

400

600

800

1000

1200

1400

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Gross Input Rates [MByte/s]

N
et

 O
u

tp
u

t
R

at
es

 [
M

B
yt

e/
s]

0

50000

100000

150000

200000

250000

300000

350000

La
te

nc
y

[n
s]

Total Output Payload
Ring Data Losses
Maximum Packet Latency

Fig. 6.24. Performance of 4-port switch with 4 processors and memories

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 145

This means that with the same switch as in the ringlet-connected case, a
7.8-fold throughput improvement can be achieved, provided that 100% data
locality is present. Latency drops to one half if the switch is not overloaded.
Other simulations show that ringlet and long-ring switches will be identical
in performance if no data locality is present. This means that for operati-
ons below the saturation limit the long-ring coupled switch can always be
preferred.

The second series of simulation experiments that was performed with
the SCINET tool compares a 16 × 16 first-grade optimized Omega network
with a conventional ringlet-based network of the same size and topology.
Furthermore, first-grade and second-grade optimized networks are compared.
Again, 100% data locality is assumed to demonstrate the upper limit of the
performance improvements.

The behavior of the 16 × 16 ringlet-based SCI network is depicted in Fi-
gure 6.25. The network saturates at 2 GByte/s gross input rate with 1412
MByte/s output rate. At that point, the network has 112 MByte/s packet
losses that increase up to 4684 MByte/s at 8 GByte/s input rate. The ma-
ximum latency is 6670 ns below saturation and jumps up to 20056 ns above
saturation. Latency saturation occurs earlier than throughput saturation, at
1600 MByte/s.

.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

80
0

16
00

24
00

32
00

40
00

48
00

56
00

64
00

72
00

80
00

Gross Input Rates [MByte/s]

N
et

 O
u

tp
u

t
R

at
es

 [
M

B
yt

e/
s]

0

5000

10000

15000

20000

25000

La
te

nc
y

[n
s]

Total Output Payload
Ring Data Losses
Maximum Packet Latency

Fig. 6.25. Performance of a ringlet-connected 16 × 16 Omega network with 100%
data locality

The performance of the first-grade optimized Omega network is shown
in Figure 6.26. It has 5333 MByte/s output rate at 7200 MByte/s gross
input rate, a 3.8-fold performance improvement over the ringlet network.
The latency is much better as well: below the latency saturation point of
6800 MByte/s, we have 1771 ns which are 27% of the ringlet latency. Above

146 H. Richter, R. Kleber, M. Ohlenroth

that point, a maximum of 5067 ns is reached which is roughly one fourth of
the ringlet’s latency.

 .

0

1000

2000

3000

4000

5000

6000
0

80
0

16
00

24
00

32
00

40
00

48
00

56
00

64
00

72
00

80
00

Gross Input Rates [MByte/s]

N
et

 O
u

tp
u

t
R

at
es

 [
M

B
yt

e/
s]

0

1000

2000

3000

4000

5000

6000

La
te

nc
y

[n
s]

Total Output Payload
Ring Data Losses
Maximum Packet Latency

Fig. 6.26. Performance of first-grade optimized 16×16 Omega network with 100%
data locality

This means that the first-grade optimized network of size 16 × 16 has
approx. the 4-fold throughput and one fourth of the latency of a conventio-
nal SCI-based Omega network, at only half of its costs. The results can be
extrapolated to sizes > 16.

The simulation results for the second-grade optimized network are shown
in Figure 6.27. It can be seen that throughput saturation also occurs at 7200
MByte/s gross input rate, but with 5456 MByte/s output rate it delivers
a slightly higher throughput than the corresponding first-grade optimized
network. Also the latency before saturation is better, 1525 ns. However, after
saturation latency jumps by two orders of magnitude and reaches 134 μs.
Note that the fully connected 4-port switch shows the same behavior.

The second-grade optimized network delivers slightly better performance
in all respects compared to the first-grade optimized network as long as it
is not overloaded, but at only half the costs. Both have roughly four times
the performance in terms of throughput and latency of the ringlet-coupled
network of the same type and size, while requiring only one half or one fourth
of the costs, respectively.

6.9 Summary and Conclusions

In this chapter, the feasibility of an SCI-based data acquisition system was
demonstrated by the achieved throughputs of 45 MByte/s and latencies of

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 147

.

0

1000

2000

3000

4000

5000

6000

0

80
0

16
00

24
00

32
00

40
00

48
00

56
00

64
00

72
00

80
00

Gross Input Rates [MByte/s]

N
et

 O
u

tp
u

t
R

at
es

 [
M

B
yt

e/
s]

0

20000

40000

60000

80000

100000

120000

140000

La
te

nc
y

[n
s]

Total Output Payload
Ring Data Losses
Maximum Packet Latency

Fig. 6.27. Performance of second-grade optimized 16 × 16 Omega network with
100% data locality

< 10μs. The sample DAQ system was based on PC test beds where a de-
cent performance was also measured for the case of additional software error
checking and correcting. In the future, the test beds will be upgraded to fiber
links and an SCI switch will be included to study its influence in practice.
Additionally, the interactions of the transmission system and the higher soft-
ware levels have to be analyzed, and a programming model must be devised
that is suitable for the physicists’ needs.

Furthermore, we have shown by means of simulation how commercial SCI
switches, which are the basic blocks of large-scale data acquisition systems
can be used more efficiently. The principle is to use the bypass FIFO that is
part of every SCI port, for establishing long SCI rings comprising a pair of
nodes where one node is a transmitter and the other node is a receiver. Then,
packets can be redirected from the switch-internal bus (i.e. the B-Link) which
is a bottleneck, to the port’s bypass FIFO. The prerequisite for redirection is
that there exists data locality in the traffic pattern between the sender and
the receiver residing on the same ring. For 100% data locality, up to a 7.8-
fold throughput improvement is achievable compared to a ringlet-connected
switch. Latency is reduced by a factor of 2 and the number of lost packets
by a factor of 7. Additionally, by grouping pairs of sender and receiver nodes
into each ring, more nodes can be connected. However, latency increases by
two orders of magnitude above the saturation point of the ring.

A new network type, called first-grade optimized network, was proposed.
It is based on long rings passing through all switch stages of a Banyan net-
work. Each long ring replaces a number of ringlets connecting neighboring
nodes in the conventional network. The new network type improves multis-
tage Banyan networks that are based on SCI ringlets. With long rings and
data locality, packets can stay on the ring where they originated, thus remo-

148 H. Richter, R. Kleber, M. Ohlenroth

ving traffic from each switch-internal bus (B-Link). For 100% data locality,
a first-grade optimized network has four times the performance in terms of
throughput and latency of a conventional SCI network of same size and type
while exhibiting one half of its costs.

Finally, so-called second-grade optimized networks were suggested, fur-
ther improving first-grade ones. They use long rings as well as intra-stage
wirings with permutation functions on a number base higher than two. With
a permutation base of four, for instance, one half of the costs of a first-grade
optimized network can be achieved, even with slightly better performance in
throughput and latency. The performance improvement is proportional to the
number of network ports. All results were obtained by the newly developed
SCINET simulation program.

References

1. T. E. Anderson, D. E. Culler, D. A. Patterson, A Case for NOW (Networks of
Workstations). IEEE Micro, pages 54–64, Feb. 1995.

2. N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, W.-K. Su.
Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro, pages 29–35,
Feb. 1995.

3. A. Bogaerts, R. Divia, H. Müller, J. Renardy. SCI-based Data Acquisition Ar-
chitectures. IEEE Transactions on Nuclear Science, Vol. 39, No. 2, Apr. 1992.

4. A. Bogaerts, R. Keyser, G. Mugnai, H. Müller, P. Werner, B. Wu, B. Skaali, J.
Ferrer-Prietro. SCI Data Acquisition Systems: Doing More with Less. CHEP’94,
San Francisco, April 1994

5. A. Bogaerts et al. RD 24 Status Report: Application of the Scalable Coherent
Interface to Data Acquisition at LHC. Oct. 1996.
http://nicewww.cern.ch/˜hmuller/˜HMULLER/docs/report96.pdf.

6. CACI Products Company. Modsim II, The Language for Object Oriented Pro-
gramming. Reference Manual, La Jolla, California, 1995.

7. R. Clark, K. Alnes. An SCI Interconnect Chipset and Adapter. Proc. Hot In-
terconnects Symposium IV, Stanford University, Aug. 15-17, 1996.

8. Dolphin Interconnect Solutions. A Backside Link (B-Link) for Scalable Coherent
Interface (SCI) Nodes. Dolphin Interconnect Solutions Inc., Oslo, Norway, 1994.

9. Dolphin Interconnect Solutions. 4-way SCI Cluster Switch. Dolphin Inter-
connect Solutions Inc., Oslo, Norway, 1995.

10. Dolphin Interconnect Solutions. Link Controller LC-1 Specification. Dolphin
Interconnect Solutions Inc., Oslo, Norway, 1995.

11. Dolphin Interconnect Solutions. PCI/SCI Cluster Adapter Specification. Dol-
phin Interconnect Solutions Inc., Oslo, Norway, 1996.

12. Dolphin Interconnect Solutions. Link Controller LC-2 Specification. Dolphin
Interconnect Solutions Inc., Oslo, Norway, 1997.

13. D. R. Engebretsen, D. M. Kuchta, R. C. Booth, J. D. Crow, W. G. Nation.
Parallel Fiber-Optic SCI Links. IEEE Micro, pages 20–26, Feb. 1996.

14. R. B. Gillett. Memory Channel Network for PCI. IEEE Micro, pages 12–19,
Feb. 1996.

15. L. R. Goke, G. J. Lipovski. Banyan Networks for Partitioning Multiprocessor
Systems. Proc. 1st Int’l. Symposium on Computer Architecture, pages 21–28,
1973.

6. SCI Rings, Switches, and Networks for Data Acquisition Systems 149

16. D. B. Gustavson, Q. Li. Local Area Multiprocessor: the Scalable Coherent
Interface. Defining the Global Information Infrastructure, S. F. Lundstrom (ed.),
SPIE Press, Vol. 56, pp. 141–160, 1994.

17. Standard for Scalable Coherent Interface (SCI). IEEE Std. 1596-1992
18. Standard for Heterogeneous Interconnect (HIC). IEEE P1355 Proposed Stan-

dard
19. D. V. James. The Scalable Coherent Interface: Scaling to High-Performance

Systems. Proc. COMPCON Spring’94, 1994.
20. E. H. Kristiansen, G. Horn, S. Linge. Switches for Point-to-Point Links Using

OMI/HIC Technology. Int. Data Acquisition Conference on Event Building and
Data Readout, Fermi National Accelerator Laboratory, Batavia, Illinois, USA,
Oct. 1994.

21. M. Liebhart, A. Bogaerts, E. Brenner. A Study of an SCI Switch Fabric. Pro-
ceedings IEEE MASCOTS’97, Haifa, Israel, 1997.

22. K. Omang, B. Parady. Performance of Low-Cost UltraSparc Multiprocessors
Connected by SCI. Proceedings Communication Networks and Distributed Sy-
stems Modeling and Simulation (CNDS’97), Phoenix, Arizona, USA, Jan. 1997.

23. H. Richter, M. Liebhart. Performance Optimizations of Switched SCI-Rings.
Proceedings 11th Annual International Symposium on High Performance Com-
puting Systems (HPCS’97), Winnipeg, Canada, July 1997.

24. H. Richter. Interconnection Networks for Parallel and Distributed Systems (in
German). Spektrum Akademischer Verlag, Heidelberg, Germany, 1997.

25. S. Scott, J. Goodman, M. Vernon. Performance of the SCI Ring. Proc. 19th
Int’l. Symp. on Computer Architecture. ACM Press 1992.

26. S. Scott. The GigaRing Channel. IEEE Micro, pages 27–34, Feb. 1996.
27. H. J. Siegel, S. D. Smith. A Study of Multistage SIMD Interconnection Net-

works. Proc. 5th Int’l. Symposium on Computer Architecture, pages 9–17, April
1978.

28. C. I. Wu, T. Y. Feng. On a Class of Multistage Interconnection Networks. IEEE
Transactions on Computers, Vol. C-29, No. 8, pages 694–702, August 1980.

29. B. Wu. Applications of the Scalable Coherent Interface in Multistage Networks.
IEEE TENCON, Aug. 1994.

30. B. Wu. SCI Switches. Int’l. Data Acquisition Conference on Event Building and
Data Readout, Fermi National Accelerator Laboratory, Illinois, USA, Oct. 1994.

31. B. Wu, A. Bogaerts, B. Skaali. A Study of Switch Models for the Scalable Cohe-
rent Interface. Proceedings of the Sixth IFIP WG6.3 Conference on Performance
of Computer Networks, Istanbul, 1995.

7. Scalability of SCI Ringlets

Geir Horn

SINTEF Electronics and Cybernetics & University of Oslo,
Forskningsveien 1, P.O. Box 124 Blindern,
N-0314 Oslo, Norway
email: Geir.Horn@ecy.sintef.no
http://www.sintef.no/

7.1 Do SCI Ringlets Scale in Number of Nodes?

SCI1 originated as a bus replacement technology, where the nodes were envi-
sioned to be board level components like processors, memory, and input and
output units. The number of nodes on a ringlet was assumed to be small,
hence the adaptation of the terminology ringlet as opposed to a presumably
larger ring. However, SCI has since long made its way into the user area as a
System Area Network, used for workstation clustering, high performance I/O
networks, and high bandwidth data acquisition systems. The scalability in
performance for these applications is often a question of the number of nodes
that can be put on the ringlet.

Scalability in this sense is a question of bandwidth available to the indivi-
dual nodes on the ringlet. Contrary to buses, the SCI links will always have
the same capacity independently of the number of nodes, however with more
nodes on the ringlet a higher fraction of a node’s output link will be con-
sumed by bypassing traffic. Due to SCI’s concept of request-response traffic,
the concept of locality is less clear on the ringlet: if a node a sends a request
to node b, the response from node b has to go around the ringlet back to a.
As an intuitive approach, for a moment ignorant of the difference in packet
sizes between the different transaction types, this request-response transac-
tion can be thought of as a single packet that has to go all the way around the
ringlet. Thus each node consumes not only bandwidth from its own output
link, but equally much from all the other nodes on the ringlet. Consequently
one may expect that with n nodes on the ringlet, the bandwidth available
to the individual nodes will be of order O(1/n); and the number of nodes
that can be put on a ringlet depends on how little bandwidth each node can
accept.

The term Scalable in SCI refers mainly to the cache coherence protocol.
There are numerous studies like [4] and [6] of this scalability suggesting ex-
tensions improving it. However, there has been little interest in bandwidth
scalability. Some early studies dealt with this issue through simulation, but
then only for systems disabling the request-response transactions through

1 See [2] for a good first introduction or the standard [3] for the details.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 151-166, 1999
© Springer-Verlag Berlin Heidelberg 1999

152 G. Horn

using only move packets: examples are [5] and [1], or [28] for data acquisition
applications within high energy physics. It is only recently with the advent
of increasingly performant PCs and workstations that the scalability of the
ringlet bandwidth has become an issue [11, 8, 7].

To evaluate the scalability of an SCI ringlet this chapter will present
a mathematical model for the bandwidth of an SCI ringlet based on the
model in [10], which is the only known previous model for SCI ringlets. The
enhanced model is presented in Section 7.2 and used in Section 7.3 to evaluate
the maximum number of nodes an SCI ringlet can support given the per node
bandwidth requirement. The limitations of the suggested approach and some
guidelines on how to circumvent some of these are presented in Section 7.4.

7.2 Ringlet Bandwidth Model

7.2.1 Transaction Formats

The SCI standard specifies a set of different packet types as given in Table
7.1. In general a transaction is either of remote write or remote read nature.
For a remote read the requesting node asks for some data stored at some
remote memory location and gets a response back containing the data ac-
tually stored at that location. For a write transaction, one node sends off the
data that should be written remotely, and then gets a confirmation back from
the remote node that the data have been successfully written to the remote
physical memory.

There is also another class of packets: the move packets. This is an un-
confirmed remote write that might be used for uncritical data such as video
frames or other isochronous traffic.

We will in this model assume that the relative fraction of the different
SCI packets sent are equal for all nodes. Thus the fraction of a given packet
type is a consequence of the considered application only, not of the node
sending the packet. In other words, the following discussion applies to the
recent use of SCI as an interconnect for workstations. Originally SCI was
designed to be a bus replacement technology where the processor and memory
are separate nodes. In this system, the memory node will of course never
generate any requests, neither read nor write, but send a lot of responses
when serving incoming requests. In a workstation cluster each node has its
own local memory and the SCI ringlet may be used to implement message
passing through remote memory transactions. It is reasonable to assume the
parallel application running on this cluster will be approximately balanced so
that all nodes perform roughly the same number and types of transactions.

The parameters for the different packet types are shown in Table 7.1.
Observe that the degree of freedom in selecting these parameters is limited
by the request-response nature of SCI: If a fraction fRreq request for the read
of a packet is sent, then it must be followed by exactly the same ratio of read

7. Scalability of SCI Ringlets 153

Transaction Packet Length Fraction
Category Type (T) Payload Totala (LT) (fT)

(Bytes) (Symbolsb)

Read 0 8 fRreq

16 16 fWreq(16)

Request Write 64 40 fWreq(64)

256 136 fWreq(256)

Lock Subaction 16 16 fLsbreq

0 8 fRres(0)

16 16 fRres(16)
Read

64 40 fRres(64)
Response

256 136 fRres(256)

Write 0 8 fWres

Lock Subaction 16 16 fLsbres

0 8 fM (0)

Move 16 16 fM (16)

&
Move

64 40 fM (64)

Echo 256 136 fM (256)

Echo 0 4 —
a The packet header and CRC are included here as appropriate.
b One symbol is two bytes as SCI uses 16-bit wide transmission lines.

Table 7.1. The SCI transactions and symbols

responses to these read requests. The same applies to all requests followed
by responses:

fRreq = fRres(0) + fRres(16) + fRres(64) + fRres(256) (7.1)
fWres = fWreq(16) + fWreq(64) + fWreq(256) (7.2)

fLsbreq = fLsbres (7.3)

Now define freq as the sum of all request fractions, fres as the sum of all
response fractions, and fmove as the sum of all move fractions:

freq = fRreq + fWreq(16) + fWreq(64) + fWreq(256) + fLsbreq (7.4)
fres = fRres(0) + fRres(16) + fRres(64) + fRres(256)

+ fWres + fLsbres (7.5)

154 G. Horn

fmove = fM (0) + fM (16) + fM (64) + fM (256) (7.6)

From the request-response nature of the protocol, it follows that freq = fres.
The following relations hold between the partial sums of the fractions in the
equations 7.4, 7.5, and 7.6:

freq + fres + fmove = 1 (7.7)
freq + fres = 1 − fmove

freq = fres =
1
2

(1 − fmove) (7.8)

For all types of packets the receiving node issues an echo packet which
is positive if the node could receive the arrived packet and store it in the
receive buffer, and negative if it could not. A negative acknowledge triggers
a retransmission from the sending node. Since all packets are acknowledged
with an echo packet, the number of echo packets equals all other packet types.
However, as a node never generates the echo packets out of its own initiative,
we do not define a special fraction for the echo packets.

As average characterizations of the application defined by the above frac-
tions, we define the mean packet length for each category. This is the weighted
sum of the packet lengths where the weights are the fractions generated of a
particular length. From the equations 7.4-7.7 we observe that these will not
in general sum to unity within each category, hence we must normalize on
the appropriate fraction sum for the category:

l̄req =
(

fRreqLRreq + fWreq(16)LWreq(16) + fWreq(64)LWreq(64)

+ fWreq(256)LWreq(256) + fLsbreqLLsbreq

)/
freq (7.9)

l̄res =
(

fRres(0)LRres(0) + fRres(16)LRres(16) + fRres(64)LRres(64)

+ fRres(256)LRres(256) + fWresLWres

+ fLsbresLLsbres

)/
fres (7.10)

l̄move =
(

fM (0)LM (0) + fM (16)LM (16) + fM (64)LM (64)

+ fM (256)LM (256)
)/

fmove (7.11)

l̄data = freq l̄req + fres l̄res + fmove l̄move (7.12)

For equation 7.12 we had to cancel the normalizing factors of the previous
equations since this is implicitly a sum of all fractions that from equation 7.7
sum to unity.

7. Scalability of SCI Ringlets 155

7.2.2 Packet Generation

Let λa be the rate at which node a generates packets to all other nodes
measured in packets per cycle. Notice that if l̄ is the expected packet length
averaged over all packet types, it is an absolute requirement that λa ≤ 1/l̄.
When equal to this upper bound, the node will on average saturate its output
link. This is only possible if there is no bypass traffic on the ringlet as this
traffic will have priority on the output link over transmission from the node.
Thus, in this extreme case we can expect the transmission queues, one queue
for outgoing requests and one for outgoing responses, to build up towards
infinity if there is any bypass traffic.

From the definition of λa it is evident that the average time between
two packets generated is 1/λa. Normally, the time intervals between two
packets are not all equal to this average, but follow some application specific
distribution. As we will apply an average-bandwidth argument here, we will
not need to specify this distribution, just require its average to be 1/λa and
assume enough buffer capacity at node a to hold all generated packets.

The total arrival rate to the ringlet in number of packets per cycle is

Λ =
n−1∑
i=0

λi (7.13)

We observe that the average throughput on the ringlet is

T = Λ × l̄data (7.14)

7.2.3 Address Distribution

First observe that each node has its individual address distribution, that is
the ratio or probability at which it generates packets to the other nodes.
However, due to the request-response nature of the SCI protocol there is a
dependency between the address distribution of a requesting node and the
address distribution of the responding node.

Let za,b be the ratio of packets generated at node a destined for node b.
It is then evident that λaza,b is the number of packets generated per cycle at
node a heading for node b.

Now let freq equal the sum of all request fractions and fres be the sum
of all response fractions. The number of request packets generated at node a
for node b is then λaza,bfreq. Obviously, the number of responses generated
at node b for node a must equal the number of packets sent in the opposite
direction, thus we have the fundamental identity

λaza,bfreq = λbzb,afres

zb,a =
λafreq

λbfres
za,b

156 G. Horn

=
λa

λb
za,b (7.15)

Where we used the fact that the total number of response packets genera-
ted by an application must equal the number of requests, that is freq = fres.

As a consequence of equation 7.15, one can only specify half of the address
probabilities, the others are given as a function of the specified ones. We also
require that

n−1∑
i=0

za,i = 1 (7.16)

7.2.4 Locality

Central to the performance of the SCI ringlet is the locality of the traffic.
Assuming that all requests go to the closest downstream node, we might
expect a higher throughput per node than for the case where all traffic is
directed to the upstream node bypassing all other nodes on the ringlet.

However, this intuitive picture is complicated by the response traffic: alt-
hough all initiated requests from a node is for its next neighbor, the responses
to these requests have to travel all around the ringlet. There may also be dif-
ferences in packet lengths. Assume that all requests are read256 requests,
then the responses are much longer than their corresponding requests. In
this case it would have been preferable that the traffic was reversed on the
ringlet and that the requests went the long way around the ring whereas the
responses went only one hop. By obtaining a good communication trace for
an application, an intelligent job mapper might try to optimize the locality
of the traffic on the ringlet and consequently increase the ringlet scalability.

Now define κ(a, b) as the total number of symbol hops caused by a request-
response transaction initiated at node a with node b as responder; with the
addition for potential move packets. Observe that za,bfTreq is the probability
that a given generated packet is directed to node b and is a request of type
T. Introduce LT as the length of a packet of type T. Consequently we have
κ(a, b) as the sum of all symbols due to request packets and the sum of all
response packets weighted with their travel distances da,b:

κ(a, b) = da,b

⎛
⎝∑

Treq

LTreqfTreqza,b

⎞
⎠ + db,a

(∑
Tres

LTresfTreszb,a

)

+ da,b

(∑
Tmove

LTmovefTmoveza,b

)
(7.17)

= da,bza,b

⎛
⎝∑

Treq

LTreqfTreq +
∑

Tmove

LTmovefTmove

⎞
⎠

7. Scalability of SCI Ringlets 157

+ db,azb,a

(∑
Tres

LTresfTres

)

= da,bza,b

(
freq l̄req + fmove l̄move

)
+ db,azb,afres l̄res

where da,b is the distance in number of hops from node a to node b, l̄req is
the average length of a request as given by equation 7.9, l̄res is the average
length of a response from equation 7.10, and l̄move is given by equation 7.11.
Observing that with n nodes on the ringlet, db,a = n−da,b, and using equation
7.15 we get

κ(a, b) = da,bza,b

(
freq l̄req + fmove l̄move

)
+ (n − da,b)

(
λa

λb
za,b

)
fmove l̄res

=
[
da,b

(
freq l̄req + fmove l̄move

)
+ (n − da,b) fres l̄res

(
λa

λb

)]
za,b

= αa,bza,b

κ(a, b) represents the amount of traffic on the ringlet caused by messages
between the two nodes a and b. Consider the traffic generated from node a
to all other nodes on the ringlet as the sum of the κ(a, b) over destination
nodes b

K(a) =
∑

b

κ(a, b) =
∑

b

αa,bza,b

=
n−1∑
d=1

[
d

(
freq l̄req + fmove l̄move

)

+
(n − d) fres l̄resλa

λ(a+d) mod n

]
za,(a+d) mod n (7.18)

Then we may define the average ringlet locality as

ξ̄ =
1
n

n−1∑
a=0

K(a) (7.19)

7.2.5 Bypass Rate

Consider a ringlet with n nodes and let the direction of the links be towards
nodes with increasing address. Let the nodes be numbered from 0 to n − 1.
We will in this section derive an expression for the expected number of data
packets passing through node with index a given the fractions of node a’s
packets routed to node b. As we are not interested in the type of these packets,

158 G. Horn

we do not separate between requests and responses, but consider these only
as data packets.

Take an example with n say equal to 5; thus the nodes are numbered
0, 1, . . . , 4. Consider node a = 2. Then for the next downstream node 3,
no data packets sent from this node will ever need to pass node 2. This
is because all the other nodes on the ringlet can be reached from node 3
without passing node 2. For node 4 on the other hand, node 0,1, and 2 can
all be reached without passing node 2, but packets sent to node 3 must pass
our tagged node 2. Thus, the contribution to the bypass rate of node 2 from
node 4 will be λ4z4,3. Node 0 must send all packets to both node 3 and 4
through node 2, hence it will contribute λ0z0,3 + λ0z0,4 = λ0(z0,3 + z0,4) to
the bypass rate. Finally, observe that node 1 must address all the other nodes
except node 2 by sending past node 2. Consequently, its contribution will be
λ1z1,3 + λ0z1,4 + λ0z1,0 = λ1(z1,3 + z1,4 + z1,0).

When generalizing this example observe that the addressing probabilities
involved can be written as zs,k mod n where s is the index of the sending node
and k is a summation index running from a + 1 to some upper limit of the
summation which is dependent on the index s relative to the observed node
a.

Further notice that the index s starts from the second node downstream
from node a, and continues all the way around the ringlet. From this we
may write s = j mod n for some j running from a + 2 up to and including
a + n − 1, which is the whole ringlet excluding the node under consideration
and its immediate downstream neighbor.

Finally observe that the number of addressing probabilities involved in
the summation increases with the distance from the tagged node, and the
number of terms in the summation is exactly (j − 1) − (a + 1), suggesting
that j−1 can be used as the inclusive upper limit for the summation variable
k.

This does indeed hold, and as a justification we return to our example
above to see that j attains the values 4, 5, and 6 as we start with j = a+2 = 4
since a = 2. For j = 4, k attains only the start value a + 1 = 3 = j − 1; for
j = 5, k attains the values a+ 1 = 3 and 4 = j − 1; and for j = 6 = a+n− 1
we have k equal to a + 1 = 3, 4 and 5 = j − 1. Having k ≥ n is allowed since
we use the modulo operator before indexing the addressing probability.

The full rate of data packets passing node a per cycle is consequently
given by

rdata,a =
a+n−1∑
j=a+2

(
λj mod n

j−1∑
k=a+1

zj mod n,k mod n

)
(7.20)

7.2.6 Echo Packet Rate

It is not only bypassing data packets that will prevent the node from trans-
mitting. There will also be a stream of bypassing echo packets acknowledging

7. Scalability of SCI Ringlets 159

data packets. Appended to this stream of bypassing echo packets is the stream
of echo packets generated at the node itself in response to data packets desti-
ned for the node under consideration.

For a node a the rate of received packets will be the sum of packets
generated at the source nodes b = a+1 to b = (a+n−1) mod n. Recall that
the number of packets sent from b to a per cycle is λbzb,a, consequently the
arrival rate at node a is

rreceive,a =
a+n−1∑
j=a+1

λj mod nzj mod n,a (7.21)

= λ(a+n−1) mod nz(a+n−1) mod n

+
a+n−2∑
j=a+1

λj mod nzj mod n,a (7.22)

Here the motivation for the form 7.22 will be apparent when adding this rate
with the rate of echo packets passing the node to be derived.

For the echo packets not generated at node a but just passing, we return
first to our previous example ringlet of n = 5 nodes and once again we will
use a = 2 as the viewpoint node. Observe that no echo packets from node 3
must pass node 2. From node 4, all echo packets to node 3 must pass node 2.
These echo packets are generated as a result of data packets addressed from
node 3 to node 4, thus the contribution to the echo rate from node 4 will be
λ3z3,4. Node 0 will have to acknowledge all incoming traffic from both node 3
and 4 through node 2, thus its contribution to the echo rate is λ3z3,0 +λ4z4,0.
Finally, for node 1 all acknowledge packets must pass node 2 giving a rate of
echos of λ3z3,1 + λ4z4,1 + λ0z0,1. When adding these contributions together
we get λ3(z3,4 + z3,0 + z3,1) + λ4(z4,0 + z4,1) + λ0z0,1

Observe from this expression that the indices of the λ involved in this
final expression can be expressed as b = j mod n, where j attains the values
from a + 1 up to a + n − 2, both limits inclusive. Further observe that the
destination identifier, the second index, of the z in the summations starts off
with the value b + 1 and runs modulo n to a − 1. If we represent this second
index with k mod n we readily have that k runs from j + 1 up to a + n − 1,
both inclusive. The rate of echo packets passing through node a is therefore
given by

recho,a = rreceive,a +
a+n−2∑
j=a+1

⎛
⎝λj mod n

a+n−1∑
k=j+1

zj mod n,k mod n

⎞
⎠

= λ(a+n−1) mod nz(a+n−1) mod n +
a+n−2∑
j=a+1

λj mod nzj mod n,a

+
a+n−2∑
j=a+1

⎛
⎝λj mod n

a+n−1∑
k=j+1

zj mod n,k mod n

⎞
⎠

160 G. Horn

= λ(a+n−1) mod nz(a+n−1) mod n

+
a+n−2∑
j=a+1

λj mod n

⎡
⎣zj mod n,a +

a+n−1∑
k=j+1

zj mod n,k mod n

⎤
⎦ (7.23)

7.2.7 Output Link Utilization Factor

There are two streams of packets blocking the node from transmitting own
data: the stream of bypassing data packets and the stream of echo packets.
The rate of the former stream was found in Section 7.2.5 above, and the rate
of the latter in Section 7.2.6 above. These rates, equations 7.20 and 7.23, are
measured in packets per cycle.

Now we define the utilization of the output link from node a due to these
two transmission preventing streams as

Upassing,a = rdata,a × l̄data + recho,a × Lecho (7.24)

where l̄data is the average length of the data packets defined by equation 7.12,
and Lecho is the length of the echo packets. Notice that this utilization factor
is measured in symbols per cycle.

Intuitively we have Upassing,a ≤ 1, where the extreme value Upassing,a = 1
corresponds to the situation where the bypass traffic totally monopolizes the
output link of node a and prevents any transmission from that node. This
will not be the case, however, as the SCI standard specifies a flow control
allowing all nodes on the ringlet some access to the ringlet (see Chapter 5).
We will only require here that the total output link utilization factor obeys
the following constraint.

Ua = Upassing,a + λa l̄data ≤ 1 (7.25)

Hence, we assume that the ringlet is in steady state and all transmission rates
are achievable. The transient behavior requires a queueing theory model to
be developed for the node, which is beyond the scope of this text.

7.3 Scalability Evaluation

In order to use the bandwidth model developed in the previous section to
evaluate the number of nodes that can be attached to a ringlet, one has to
specify the application specific parameters used in the model: the fractions
of the packet types for the overall system, the packet generation rates and
the address distribution for the individual nodes.

7. Scalability of SCI Ringlets 161

7.3.1 Common Assumptions

We will here search overall guidelines for the design of SCI systems, and not
link our analysis to any particular application. Most applications running
on a workstation cluster exploiting SCI as the interconnect are based on
some generic message passing interface, typically MPI. Thus the packet types
used will be given by how e.g. MPI uses the SCI protocol to carry messages
across. To our knowledge, the most efficient MPI implementation for SCI is
ScaMPI TM from [9]. This implementation uses only remote write operations,
write64. The packet length of 64 bytes is used since this is the largest packet
size supported by the present hardware. Thus we will assume for the first two
experiments that fWreq(64) = fWres = 1/2 and all other packet type fractions
are zero.

Assuming an MPI based implementation is also beneficial as it allows us
to compare our results with the analysis of Chapter 8. We will also assume
that all nodes have identical bandwidth requirements, that is λa = λb = λ.
The present SCI adapters are hosted on PCI cards, thus the application has
to communicate across the PCI bus with the danger that this bus restricts the
achievable bandwidth, or packet generation rate. However, we will here search
for the number of supported nodes as a function of their communication
requirements.

The raw bandwidth of today’s 32-bit wide PCI bus operating at 33 MHz
is 132 MByte/s. If we assume that this bandwidth is achievable and the bus is
used in both directions to both send and receive packets from the SCI ringlet,
we have 66 MByte/s available for transmitting packets. We will evaluate the
scalability for several selected PCI bus bandwidths from 25 MByte/s up to
132 MByte/s. In the following, let BPCI denote the available transmission
bandwidth, measured in MByte/s.

Now this must be converted into packets per cycle as this is the unit used
for the transmission rate λ. By first dividing BPCI by the number of bytes per
symbol, we convert the unit to megasymbols per second. By further dividing
this by the average data packet length, l̄data, measured in symbols per packet
we have the unit packets per second. Finally we need to know how many
SCI cycles there are per second. Today’s Link Controller LC-2 from Dolphin
operates at a clock frequency of 125 MHz, but uses both edges of the clock
for transmission. Hence the transmission rate is 250 MHz, corresponding to
250 megacycles per second. Dividing by this factor we arrive at the correct
packets per cycles as the required unit for λ:

λ =
BPCI

(
MByte

s

) /
2

(
Bytes

Symbol

)
l̄data

(
Symbols
Packet

)

=
BPCI

(
MSymbols

s

)
2l̄data

(
Symbols
Packet

)

162 G. Horn

=
BPCI

2l̄data

(
MPackets

s

) /
250

(
MCycles

s

)

=
BPCI

500l̄data

(
Packets
Cycles

)
(7.26)

With different choices for BPCI we will numerically find the number of
nodes n that maximizes Ua given by equation 7.25 subject to the constraint
that Ua ≤ 1.

7.3.2 Uniform Ringlet Traffic

Like in Chapter 8 we will assume that the traffic is completely uniform on
the ringlet for all pairs of source nodes a and destination nodes b. As a
consequence of equation 7.15 we get the following address distribution

za,b =
{ 1

n−1 when a �= b

0 when a = b
(7.27)

The corresponding maximum number of nodes the ringlet can support is
given in Table 7.2 and shown in Figure 7.1.

PCI Bandwidth (BPCI) in MByte/s 25 35 45 55 66 75
Maximum number of nodes 34 24 19 16 12 11

PCI Bandwidth (BPCI) in MByte/s 85 95 105 115 125 132
Maximum number of nodes 10 9 8 7 7 6

Table 7.2. Nodes possible with uniform traffic

7.3.3 Non-uniform Ringlet Traffic

We will in this section analyze the traffic on the ringlet when the traffic
is non-uniform. Ideally one could think of a traffic pattern where only two
nodes communicate, and then place these two nodes side by side. This is a
classical example of extreme locality if only move packets are used since the
only bypass traffic on the ringlet will be from the echo packets that are almost
neglegible. However, in this evaluation of message passing using MPI we will
have request-response transactions, leading to a high locality for half of the
packets whereas the other half of the packets will have to pass all other nodes
on the ringlet.

The corresponding address distribution is

za,b =

⎧⎨
⎩

1
2 if b = (a + 1) mod n
1
2 if b = (a − 1 + n) mod n
0 otherwise

(7.28)

7. Scalability of SCI Ringlets 163

where the second case is a result of the reflexive property of equation 7.15
requiring za,b = zb,a.

Again we get exactly the same results as for the uniform traffic pattern
shown in Table 7.2. This comes from the fact that the address distribution
has to be symmetric with half of a node’s traffic passing all other nodes on
the ringlet. If we evaluate the average locality of equation 7.19, we get for a
ringlet of 10 nodes ξ̄ = 120 in both cases. This fact explains why this change
in the address distribution did not influence the ringlet scalability.

7.3.4 Changing Packet Lengths

In the last experiment we will investigate the effects of a potential future MPI
implementation trying to use longer packages for longer messages in order to
reduce the number of SCI transactions per message and, hence, to reduce the
message latency. We return to the uniform traffic address distribution and
assume that the requests are equally shared between write64 and write256
packets.

The immediate result of this change is that the transmission time for an
MPI message is reduced at the cost of increased average packet length on
the ringlet. As a consequence one may expect fewer nodes to be possible on
the ringlet, which is confirmed by the results of Table 7.3. These results are
shown graphically in Figure 7.1.

PCI Bandwidth (BPCI) in MByte/s 25 35 45 55 66 75
Maximum number of nodes 18 13 10 8 6 6

PCI Bandwidth (BPCI) in MByte/s 85 95 105 115 125 132
Maximum number of nodes 5 4 4 4 3 3

Table 7.3. Nodes possible with write64 and write256 packets used

7.4 Discussion

The results presented here on the scalability of a single ringlet with an MPI
based application are in line with the results reported in Chapter 8. Our
results indicate that the packet size used in the communication contributes
inversely to the number of nodes one may have on a single ringlet. We have
also seen that the bandwidth available to a given node is roughly of order
O(1/n) as intuitively expected.

We have encouraging results from applying this model to the MPI regime,
but care must be taken when evaluating other applications perhaps exploit-
ing more of the SCI functionality. The presented model considers only the

164 G. Horn

40 60 80 100 120

5

10

15

20

25

30

35

Nodes

PCI Bandwidth

write64 and write256

write64 only

Fig. 7.1. Maximum number of nodes possible on a ringlet under uniform traffic
with using firstly only write64 requests and then an equal mix of write64 and
write256 requests.

utilization of the ringlet bandwidth, satisfactory for most purposes, but there
are other important aspects to address when evaluating the performance of
a ringlet:

– The fractions of the different packet types are assumed to be equal for
all nodes. Thus if one node always generates packets for another node
that only acknowledges or sends short responses back, this is not directly
accommodated by the model’s parameters. As an example of an application
of this kind consider data acquisition in high energy physics where huge
amount of data is produced at the sensors and then acknowledged by the
various trigger levels. To model this effect in the above equations one will
have to reduce the packet generation factor λ for the responding node so
that the average number of symbols per cycle is correct.

– The presented model does not consider buffers and buffer overflows as we
tacitly have assumed infinite buffer capacity available. In real SCI imple-
mentations there are chip-level constraints the system designer are forced
to accept. The effect of a buffer overflow in the sending direction is to re-
duce the amount of data the node is capable of sending, thus the real λ
might be less than the one specified. A buffer overflow on the receiving side
will cause the sending node to retransmit the packet, thus using the band-
width twice for the same amount of data. Simulations and measurements
reported in [7] have indicated that this retry effect is probably the single
major reason for performance degradation in SCI systems.

7. Scalability of SCI Ringlets 165

– Only average steady state bandwidth utilization is modeled here. For sy-
stems that are highly oscillating or where the transient conditions do not
settle within a reasonable time, the predictions might not be exact. As an
example of such a situation, consider a system where the normal traffic is
very low, but due to some external event several nodes start an intense
communication that settles after some seconds. This kind of system beha-
vior can hardly be accommodated within the existing model parameters.

– The model does not consider the low-level flow control on the ringlet. In
equation 7.24 it is possible for the bypassing traffic to saturate a node’s ou-
tput link, leaving no capacity for the node itself to transmit. This situation
will trigger a low-level flow control in the real system reducing the allowed
bandwidth of the other nodes to a steady state level where they all get
about the same access to the ringlet. The net result can easily be accoun-
ted for in this model by reducing the selected λ to this post flow-control
level; as in the previous comment this is the real steady state conditions
for which the model is valid.

Of the model’s limitations mentioned above, we suggest for future work
that buffer models be included first. This will require a queueing theoretical
extension of this work to allow a more complete analysis of the ringlet and
the node interfaces.

7.5 Conclusion

We have presented a mathematical model for the bandwidth utilization on an
SCI ringlet satisfactorily capturing the major performance effects. This model
has been used to evaluate the scalability of MPI based systems achieving
figures comparable to results by other researchers. For uniform traffic, the
model shows that ringlets up to a maximum size of about 10 nodes are
possible given that the output capacity of the nodes is limited by the capacity
of the PCI bus.

Future extensions to this model should include queueing models taking
the buffer utilization into account in the nodes’ interfaces to better evaluate
transient conditions and side effects of buffer overflows.

Acknowledgments

This work is supported by Esprit Project No. 25257 (SCI Europe).

References

1. H. Cha, R. Daniel Jr., and A. Knowles. Simulated behaviour of large scale SCI
rings and tori. In Proceedings of the Fifth IEEE Symposium on Parallel and

166 G. Horn

Distributed Processing, Dallas, TX, USA, pages 266–274. IEEE Comput. Soc.
Press, December 1993.

2. D. B. Gustavson and Qiang Li. The Scalable Coherent Interface (SCI). IEEE
Communications Magazine, 34(5):52–63, August 1996.

3. IEEE. The Scalable Coherent Interface (SCI), 1992. Standard 1596.
4. S. Kaxiras. Kiloprocessor extensions to SCI. In Proceedings of IPPS ’96. The

10th International Parallel Processing Symposium, Honolulu, HI, USA, pages
166–172. IEEE Comput. Soc. Press, April 1996.

5. E. H. Kristiansen, J. W. Bothner, T. I. Hulaas, E. Rongved, and T. B. Skaali.
Simulations with SCI as a data carrier in data acquisition systems. IEEE Tran-
sactions on Nuclear Science, 41(1):125–130, February 1994.

6. Ing-Zong Lu and Tien-Fu Chen. Extending SCI on hierarchical directory trees
for large-scale multiprocessors. IEICE Transactions on Information and Sy-
stems, E80-D(4):434–440, April 1997.

7. Knut Omang. SCI Clustering through the I/O bus: A Performance and Func-
tionality Analysis. PhD thesis, University of Oslo, 1998.

8. Knut Omang and B. Parady. Scalability of SCI workstation clusters, a prelimi-
nary study. In Proceedings of the 11th International Parallel Processing Sym-
posium, Genva, Switzerland, pages 750–755. IEEE Comput. Soc. Press, April
1997.

9. SCALI, Hvamstubben 17, 2013 Skjetten, Norway. ScaMPI User’s Guide, 1998.
Version 1.3.0. Available from http://www.scali.com.

10. S. L. Scott, J. R. Goodman, and M. K. Vernon. Performance of the SCI ring.
Computer Architecture News, 20(2):403–414, May 1992.

11. Jens Simon and O. Heinz. SCI multiprocessor PC cluster in a Windows NT
environment. Supercomputer, 13(2):44–57, 1997.

12. Bin Wu. The Applications of the Scalable Coherent Interface in Large Data
Acquisition systems in High Energy Physics. PhD thesis, University of Oslo,
1996.

8. Affordable Scalability Using Multi-Cubes

H̊akon Bugge, Knut Omang

Scali AS
Hvamstubben 17
N-2013 Skjetten, Norway
Email: {hob,knuto}@scali.no

8.1 Introduction

This chapter presents an analysis of the scalability of Scali systems. A Scali
high-performance server consists of compute nodes, interconnected by a high-
speed, low-latency SCI interconnect. The topology addressed in this paper
will be direct networks based on r-ary f-cubes, or multi-dimensional tori, also
called multi-cubes. The focus is on the scalability of a specific implementation
of the SCI architecture, namely the PCI to SCI adapter boards from Dolphin
Interconnect Solutions [5]. The adapter boards are enhanced with more than
one SCI link controller (LC) in order to increase the number of supported
dimensions (or fan-outs).

We show how the SCI ringlets and the internal bus in each adapter limit
scalability of the interconnect, and how the two relate to each other. The
internal bus (the B-Link) is used to take packets between different dimensions
and between each dimension and the PCI interface towards the local node.

The resulting analysis can serve as a guide to select the right topology for
a given system size. We discuss how the interconnect scales with respect to the
amount of traffic each node can generate, which is limited to the bandwidth
of a single PCI bus, and argue that these topologies scale to 512 nodes using
state-of-the-art technology.

PSB

LC-2 LC-2 LC-2

32-bit 33MHz PCI

64-bit 50MHz B-Link

16-bit 125MHz Uni-directional SCI links

Fig. 8.1. Block diagram of PCI to SCI adapter board

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 167-175, 1999
© Springer-Verlag Berlin Heidelberg 1999

168 H. Bugge, K. Omang

8.2 Interconnect Overview

This chapter covers systems which use a 32-bit, 33 MHz PCI bus [8] as the
attachment point to the interconnect. The bridge functionality from PCI
to SCI is handled by the PSB (PCI to SCI Bridge chip) [3]. This bridge
translates PCI memory operations to SCI transactions and vice versa. Please
note that the PSB chip does not contain any SCI link, but interfaces to B-
Link (Backside Link for SCI link chips) [2]. B-Link is a multi-master split
request-response bus where the packet format is a superset of the SCI packet
format. The translation from B-Link to SCI physical layer is performed by the
LC-2 (Link Controller 2) [4]. The block diagram of the PCI to SCI adapter
board is shown in Figure 8.1. The gross bandwidths of the buses and the
SCI links are listed in Table 8.1. Here we see the PCI bus as a restriction;
however, both B-Link and the SCI links might be burdened by traffic to/from
other nodes.

Bus Width Frequency Gross Bandwidth
(bits) (MHz) (MByte/s)

PCI 32 33 133
B-Link 64 50 400
SCI 16 125 500

Table 8.1. Gross bandwidth of buses and links

8.3 Methodology

To evaluate scalability we will see how the different parts of the interconnect
restrict the bandwidth in the case where all nodes communicate with all
other nodes. The first step in the analysis will be to determine the efficiency
of the different parts of the interconnect. Then we will look at the impact
the SCI links and the B-Links have on bandwidth as a function of topology
and system size. The restriction in interconnect bandwidth which stems from
the PCI bus is independent of the size and topology of the system. This is
because the PCI bus only restricts the rate with which the interconnect can
deliver packets to a node and the rate at which the node itself emits packets
to the interconnect.

The Scali system uses SCI nwrite64 request packets from the requester
node (initiator in PCI terminology) to the responder node (target). The re-
sponder node writes the 64-byte payload to memory and signals the com-
pletion of the transaction by sending a resp00 back to the requesting node.
The 80-byte large nwrite64 packet will use 11 cycles on B-Link. The 16-byte
resp00 packet will consume 3 cycles on B-Link. A single cycle is required on
B-Link to switch between different masters (bus turnaround).

8. Affordable Scalability Using Multi-Cubes 169

When a send packet (either request or response) is taken off an SCI ringlet,
an 8-byte echo is returned to the node which injected the send packet into
the ringlet. Furthermore, each packet will be followed by two 2-byte idles.
The SCI specification dictates the use of one idle after each packet, but LC-2
uses two. The efficiency of B-Link and SCI link nwrite64/resp00 traffic is
calculated in Table 8.2.

B-Link (cycles) SCI links (bytes)
Req 11 Req 80
Bus turnaround 1 Req.idle 4
Rsp 3 Req.echo 8
Bus turnaround 1 Req.echo.idle 4
Total (cycles) 16 Rsp 16
Total (bytes) 128 Rsp.idle 4
Payload (bytes) 64 Rsp.echo 8
Efficiency (%) 50 Rsp.echo.idle 4

Gross Size 128
Payload 64
Efficiency (%) 50

Table 8.2. Efficiency of B-Link and SCI links

B-Link restricts the available bandwidth of a given node; the available
bandwidth is shared between all traffic going to the node, the traffic being
generated by the node, and the traffic which uses the switch constituted by
the attached LCs. The maximum number of packets which have to pass a
single B-Link is called hot-B-Link.

The SCI links which constitute the interconnect fabric, do not provide
each sink-source pair with a set of dedicated SCI ringlets. Hence, the total
number of packets which has to flow through a single ringlet segment will
restrict the available bandwidth. The total number of packets passing through
a single ringlet segment is called hot-link.

The term hot-link is defined in [6]. In their analysis, the adapter internal
interconnect is assumed to be a true switch. The term hot-queue is used to
describe the number of packets traversing through a particular queue in the
adapter-internal switch. Since the LC-2 based adapters used in Scali systems
are based on a bus-based switch, i.e., the B-Link, we had to define the hot-
B-Link term to precisely define the adapter internal traffic rate. The analysis
in [6] is based on the assumption that all nodes transmit N packets, i.e., each
node sends a packet to itself. In our case we assume nodes only send to the
N − 1 other nodes on the interconnect.

170 H. Bugge, K. Omang

8.4 Analysis

When all nodes communicate with all other nodes simultaneously, a single
node will issue N − 1 packets. The bandwidth available to a node will be the
N − 1 packets issued, divided by the hot traffic, multiplied by the effective
bandwidth.

Assume a regular multi-cube where each node is connected to f (bi-
directional) SCI ringlets (i.e. the adapter board is populated with f LC-2
chips), and that each ringlet is connected to r nodes. The number of nodes
is then N = rf . An example of a 3D torus, where r = 4 and f = 3 is given in
Figure 8.2. Note that each line in Figure 8.2 indicates an SCI ringlet, as illu-
strated by one ringlet in each of the three dimensions. A multi-cube consists
of

R = f ∗ rf−1 (8.1)

ringlets. Since each ringlet has r segments, the total number of link segments,
S, in a multi-cube is

S = r ∗ R = r ∗ f ∗ rf−1 = f ∗ rf = f ∗ N (8.2)

Fig. 8.2. 3D torus, r = 4 and f = 3

8.4.1 “Hot-Link” Analysis

The average number of ringlet segments traversed by a packet within a single
ringlet can be calculated. Assume that a node in a ringlet sends one packet
to each of the r − 1 other nodes on the ringlet. The r − 1 packets will tra-
verse 1, 2, 3, ..., r−1 segments correspondingly. The average number of ringlet
segments visited is then

1 + 2 + . . . + r − 1
r − 1

=
(r − 1) ∗ r

2 ∗ (r − 1)
=

r

2
(8.3)

8. Affordable Scalability Using Multi-Cubes 171

Considering a minimal routing in the multi-cube [1], we can calculate the
probability for a packet to traverse a ringlet in each of the f dimensions.
The number of packets sent from a node which has to traverse a ringlet in
a particular dimension, is the total number of nodes minus the node sharing
the same coordinate in the given dimension. The number for nodes sharing
one coordinate in a given dimension is rf−1 = rf/r = N/r. Thus, each packet
has a probability of

N − N/r

N − 1
=

N ∗ (r − 1)
r ∗ (N − 1)

(8.4)

for traversing a ringlet in each of the f dimensions. Since the total number
of packets sent is N ∗ (N − 1), we can express the hot-link traffic as

HotLink =
N ∗ (N − 1) ∗ f ∗ N ∗ (r − 1)/(r ∗ (N − 1)) ∗ r/2

f ∗ N

=
N ∗ (r − 1)

2
(8.5)

8.4.2 “Hot-B-Link” Analysis

The number of packets flowing through a B-Link is the number of packets
sent by the node plus the number of packets received by the node plus the
number of packets which switch dimensions at the node, i.e. the packets which
are taken off one ringlet and inserted into a ringlet in another dimension. The
number of packets sent and received by the node is 2 ∗ (N − 1). Of the total
number of packets sent from a node, N − 1, some portion will only traverse
one dimension, another portion will traverse two dimensions, and so on, and
the last portion will traverse all f dimensions.

Let Pd indicate the number of packets which traverse d dimensions. As-
sume N being an f -digit number using radix r initially containing all zeros.
Pd equals the number of permutations of N having d digits different from
zero. There exists f ∗(f −1)∗(f −1)∗ . . .∗(f −(d−1)) = f !/(f −d)! positions
for d digits in N . Since the d digits might be permuted within N , we divide
by d!. The number of d-digit numbers having all digits different from zero is
(r − 1)d, and Pd can be expressed as

Pd =
f ! ∗ (r − 1)d

d! ∗ (f − d)!
(8.6)

The hot-B-Link traffic is the sum of the packets sent by a node plus the
number received by the node plus the weighted sum of Pd. A packet which
traverses d dimensions will switch dimension d − 1 times, hence we use this
as the weight. The hot-B-Link traffic can then be expressed as

HotBLink = 2 ∗ (N − 1) +
f∑

d=2

(d − 1) ∗ Pd (8.7)

172 H. Bugge, K. Omang

8.5 Results

As discussed in the previous section, the maximum bandwidth available to a
node in a multi-cube is restricted by the ringlets and the B-Links. The maxi-
mum available bandwidth is then the smallest of the two, i.e., the maximum
bandwidth available to a node is the minimum of the restrictions imposed
by the hot-link and the hot-B-Link . The hot-link factor is illustrated for two
topologies in Figure 8.3.

Fig. 8.3. Hot-link illustration; 4-node ringlet (left) with a hot-link factor of 6, and
a 2-ary 2-cube (right) with a hot-link factor of 2

The bandwidth available to a node as restricted by the hot-link is illust-
rated in Figure 8.4. The ringlet’s inability to scale is clearly visible and we
see that more dimensions in the topology cease the restriction imposed by
the SCI ringlets.

0

50

100

150

200

250

300

350

400

450

500

1 10 100 1000 10000
 No. of Nodes

 M
B

yt
e/

s
pe

r
no

de

Ringlet

2D-Torus

3D-Torus

4D-Torus

Fig. 8.4. Available bandwidth per node as restricted by the hot-link

8. Affordable Scalability Using Multi-Cubes 173

The restriction in bandwidth imposed by the hot-B-Link is illustrated
in Figure 8.5. The bandwidth per node for the one-dimensional ringlet is
constant with respect to system size, since the B-Link traffic is proportional
to the system size. However, for more than one dimension, the B-Link will
limit the available bandwidth both with increased number of dimensions as
well as increased system size.

40

50

60

70

80

90

100

110

1 10 100 1000 10000

No. of Nodes

M
B

yt
e/

s
pe

r
no

de

Ringlet

2D-Torus

3D-Torus

4D-Torus

Fig. 8.5. Available bandwidth per node as restricted by the hot-B-Link

The bandwidth available to a node is restricted by the minimum of the
bandwidth constrained by the hot-link and the hot-B-Link . This is plotted
in Figure 8.6. The knee on the curves is the transition point where B-Link
limitation equals the limitation imposed by the SCI links. Left of the knee,
the hot-B-Link limits the per-node bandwidth, whereas the hot-link is the
limit for a larger number of nodes.

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

1 10 100 1000 10000

 No. of Nodes

M
B

yt
e/

s
pe

r
no

de

Ringlet

2D-Torus

3D-Torus

4D-Torus

Fig. 8.6. Available bandwidth per node as restricted by the either the hot-link or
the hot-B-Link

174 H. Bugge, K. Omang

From Figure 8.6, the optimum fanout can be chosen for a given system
size. For systems with 6 or fewer nodes, a single ringlet is the best choice.
A two-dimensional torus is the best choice for up to 64 nodes. For 64 nodes,
the ringlet size restricts the bandwidth to 70 MByte/s in a 2D torus, whereas
the B-Link restricts the bandwidth to 61 MByte/s in a 3D torus of the same
size. Minimum latency is increased when dimension switching is necessary.
The time taken to switch directions once on the PCI/SCI adapter board for a
64-byte transaction is around 700 ns while bypass latency per node within a
ring is around 25 ns [7]. Clearly, a 2D torus is the best choice. As the number
of nodes passes 100, the 3D torus becomes the best choice, and this holds true
for up to 1000 nodes. A 3D torus having 512 nodes will sustain a bandwidth
of 55 MByte/s per node.

It is interesting to see how the interconnect bandwidth relates to the I/O
bus bandwidth. The PCI bus used in these Scali systems has an efficiency
of about 75% on the write burst cycles to/from the SCI/PCI adapter board.
Since the PCI will be burdened with traffic in both directions, PCI will re-
strict the available bandwidth per node to half of the sustained peak in one
direction, i.e., roughly 50 MByte/s. Since the bandwidth provided by the SCI
interconnect is higher, the scalability in terms of bandwidth is linear up to
512 nodes (assuming a 3D torus) for Scali systems.

8.6 Conclusions

The interconnect bandwidth for various multi-cube topologies has been ana-
lyzed. For the implementation of the SCI architecture used in Scali systems,
we have shown linear scalability in terms of interconnect bandwidth. We will
use these results as a guide to select the right fanout for building Scali sy-
stems of a particular size. The analysis should also be valuable for others
who want to build or plan the purchase of SCI based tori or simply want to
understand the dynamics of such systems.

Acknowledgment

The authors are grateful for the help in deriving equation 8.6 given by Per
Berge Johannesen.

References

1. W. J. Dally and Ch. L. Seitz. Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Transactions on Computers, 36(5):547–553,
May 1987.

8. Affordable Scalability Using Multi-Cubes 175

2. Dolphin Interconnect Solutions. A Backside Link (B-Link) for Scalable Cohe-
rent Interface (SCI) Nodes, draft 2.4 edition, September 1995.

3. Dolphin Interconnect Solutions. PCI-SCI Bridge Functional Specification, ver-
sion 3.01 edition, November 1996.

4. Dolphin Interconnect Solutions. Link Controller LC-2 Specification, version 1.03
edition, October 1997. Preliminary version.

5. Dolphin Interconnect Solutions Inc. PCI-SCI Cluster Adapter Specification,
version 1.1 edition, May 1996.

6. R. E. Johnson and J. R. Goodman. Interconnect Topologies with Point-to-
Point Rings. Technical Report 1058, CS Department, University of Wisconsin
– Madison, December 1991.

7. K. Omang. Performance of a Cluster of PCI Based UltraSparc Workstati-
ons Interconnected with SCI. In Proceedings of Workshop on Communication
and Architectural Support for Network-based Parallel Computing, Las Vegas,
Nevada, volume 1362 of Lecture Notes in Computer Science, pages 232–246.
Springer-Verlag, February 1998.

8. PCI Local Bus Specification, Revision 2.1.

Part IV

Device Driver Software and Low-Level APIs

To facilitate secure, transparent, user-level access to the distributed shared
memory (DSM) of the SCI hardware, a variety of setup and resource mana-
gement tasks have to be performed. As for other I/O devices, such tasks are
carried out by the operating system, via the SCI device driver code. Whereas
communication over SCI is lightweight and efficient, the management tasks
enabling this are considerably more complex than those required, e.g., for a
mainstream network, as pointed out in Chapter 9.

The functionality that has to be covered by an SCI device driver includes:
exporting, distributing, importing, and mapping of DSM segments used for
communication; providing protection for, and locking of, pages comprising
the shared segments; handling of persistent transfer errors, link and node fai-
lures, and erroneous behavior of processes; raising and delivering interrupts;
exception handling; and programming and controlling DMA engines.

Chapter 9 reports on these challenging issues and their solutions in two
SCI device drivers, those from Dolphin Interconnect Solutions and Scali A.S.
Moreover, the approach chosen and the lessons learned in porting these two
drivers to Linux are described, providing interesting insights into the comple-
xity of low-level SCI software and into the experiences made with the Dolphin
SCI hardware.

A different perspective is given in Chapter 10 which describes the SCI
Physical Layer API (SCI PHY-API), currently being in the final phase of
standardization as part of the family of SCI standards (IEEE P1596.9). The
standard does not aim at defining full SCI device driver functionality, but
rather attempts to specify a lean software layer abstracting the hardware
DSM and enabling its use with minimum added overhead, such that real-
time applications are not constrained from a performance point of view. The
hardware abstraction is not specifically tied to SCI, but may be applied to
other DSM interconnects as well. It is interesting to compare this standard
functionality with the device drivers reported in Chapter 9.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 177-178, 1999
© Springer-Verlag Berlin Heidelberg 1999

178 Device Driver Software and Low-Level APIs

A prototype implementation of SCI PHY-API has been done in the con-
text of a data acquisition system in a high energy physics application, descri-
bed in Chapter 23. That chapter also introduces another low-level SCI API
called the SISCI API which is, however, more application-oriented in that it
abstracts both the hardware and the device driver software.

9. Interfacing SCI Device Drivers to Linux

Roger Butenuth, Hans-Ulrich Heiss

Operating Systems and Distributed Systems Research Group,
University of Paderborn, Germany
email: {butenuth, heiss}@uni-paderborn.de
http://www.uni-paderborn.de/cs/heiss/

9.1 Introduction

The ultimate goal of the SCI standard is to support memory coupling of
different SCI nodes, where remote memory accesses are handled entirely by
the hardware. So one may ask: Why do we need a driver? At least using the
memory of a ‘usual’ computer needs no driver, so where is the difference? The
answer is simple: There is no difference in using the memory, SCI memory
looks just slower for the processor whenever the SCI hardware has to fetch a
remote cache line.

The task of an operating system is to provide a virtual view to all pro-
cesses: they all see their own virtual version of the machine, more or less
perfectly isolated from other processes. The current situation is to do some
of this virtualization in hardware (e.g. address translation and protection by
the MMU), and some in software (e.g. time-slicing, file handling). Which parts
are done in hardware mostly depends on efficiency considerations. Emulating
a MMU in software is possible, but rather slow.

The MMU does only one part of the memory handling, translation of
virtual to physical addresses and signaling faults to the operating system.
The other part of management is still done by the operating system. The
memory management is usually tightly coupled with file system caches, a
way to avoid expensive copy operations of large memory blocks.

What is changed by putting SCI hardware into a node? On the hardware
level, there are two changes: a node can access local physical memory and
parts of the 64-bit SCI memory space visible in its physical address space.
Access to all memory areas is still handled by hardware, but there is the need
to manage how remote memory is accessed. Today’s operating systems are
not prepared to handle this, making drivers necessary which handle proper
allocation of local and remote memory resources. This puts many manage-
ment tasks into the driver, making it complicated compared to other drivers
that access only a ‘simple’ device1.

1 The Dolphin SCI driver source is more than three times larger than the largest
SCSI driver in the Linux kernel.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 179-190, 1999
© Springer-Verlag Berlin Heidelberg 1999

180 R. Butenuth, H.-U. Heiss

9.2 Layers of Functionality

9.2.1 Address Spaces

Before starting with the possible layers of SCI device drivers, a short look at
some of the address spaces involved seems to be necessary. The memory in
SCI systems can be seen from different points of view. First of all, the 64-bit
SCI address space is split into 48-bit node address spaces and a 16-bit node
index (Figure 9.1). It is most likely very sparse populated. In a typical system
neither all 216 nodes nor all 248 addresses within the nodes will be used. The
next view is the physical address space of the nodes. This can be 32 bits
(e.g. Intel x86) or 64 bits (e.g. DEC Alpha) wide. Both imply restrictions on
the mapping to the SCI address space. A 64-bit local address space is able
to map the whole SCI address space, but in the other direction SCI with
its 48-bit node address space cannot map the whole local space of all nodes.
This is no real restriction, as long as only 48 bits of the local space are used.
On the other hand, a 32-bit local address space puts many more restrictions
on the system: it can map only a small portion of the SCI address space
and most likely not all physical memory available in the system. Today, SCI
systems with more than 4 GByte total physical memory are quite common.
In these systems, a process can only map a fraction of the whole physical
memory. This is just the opposite situation as on local systems, where the
virtual memory is larger than the physical memory!

9.2.2 Levels of Hardware Abstraction

SCI drivers in kernel space can provide different abstraction levels to the user
level software on top of the kernel. We will discuss the different levels before
taking a closer look at two implementations, the Linux version of the Scali
driver [8] and the Dolphin driver [3]. Both were ported at the University of
Paderborn in the project ‘Arminius’ [2].

A solution using no interrupts can live entirely in user space. It is sufficient
to map all hardware addresses into the virtual address space of a process and
to manipulate the hardware from there. The approach has some drawbacks
which make it infeasible in most cases, but it gives an easy way to start
development without the trouble of writing code that is part of the kernel.
This approach requires that all processes accessing the SCI hardware of the
node have root privileges and gets around all security barriers in the kernel. It
may be an option for a dedicated system that controls some other hardware
connected by SCI. In a multi-user environment like a computing center, this
is not an option. Another problem is the allocation of physical memory from
user space. This is not supported in standard Linux kernels, but one could
reserve some of the physical memory at boot time for this purpose to solve
the problem.

9. Interfacing SCI Device Drivers to Linux 181

MMU
ATT

20:20

13:45

node number

local
physical
address

unused

12 bit
19 bit

32 bit

virtual
address
space

(32 Bit)

physical
address
space

(32 Bit)

16 bit

SCI
address
space

(64 Bit)

Fig. 9.1. Different address spaces and mappings between them.

Instead of mapping the whole SCI adapter card registers into a user pro-
cess’ address space, one can write a small kernel level driver with access
functions to the features of the SCI interface. This enables the driver to do
some access control, avoiding that only root processes can use the interface.
With this type of interface it is possible to forward interrupts to user level,
an approach to avoid polling. A user level library could be used to implement
a standard compliant interface, e.g. SISCI. Even this approach lacks resource
management in the kernel, complicating cleanup after termination of pro-
cesses using the driver. The whole information about allocated resources is
stored in the processes, either in user code or in a library. A cleanly termi-
nating process can free all its resources, a crashing process cannot. Together
with the memory footprint of the process, all allocation information vanishes.
It should be obvious that this is no option in a multi-user environment with
‘untrusted’ programs.

Safe multi-user operation makes proper resource management in the driver
necessary. The driver has to maintain information which processes—local and
remote—use the resources. Especially keeping track of remote resources adds
a lot of complexity and requires communication between drivers on different
nodes. Whenever a process owning a resource terminates, all processes on

182 R. Butenuth, H.-U. Heiss

other nodes have to be notified. In some cases the notification is difficult to
achieve, but it must be guaranteed that the other processes cannot access the
resource after it has been relinquished. Some early drivers did not consider
this problem, making it possible to overwrite memory on a remote node
that was no longer allocated by the driver. This is possible without MMU
intervention on the remote system because it is a direct memory access from
the SCI hardware. Eventually the kernel on the system will crash.

9.2.3 Resource Management

From now on we concentrate on drivers which are more than just wrappers
around register access functions because the distributed resource manage-
ment is one of the interesting parts of the drivers. SCI memory is managed
in multiples of pages; the Scali driver calls a piece of memory a chunk. A
chunk is located on one node and consists of physical memory that is never
paged to disk. Paging of SCI memory would be possible, but every time a
page is swapped out to disk, all other nodes sharing this page would have to
be informed. Although this would be possible, it is difficult to realize. With
respect to current prices for memory and SCI adapters it seems to be much
better to put more memory into the nodes rather than to go to the trouble
of paging SCI shared memory to disk.

Another issue is raised by the capabilities of the SCI hardware in the
nodes. The PCI/SCI adapter card from Dolphin [3] maps parts of the SCI
address space to an address window within the PCI address space. The ‘mini-
MMU’ responsible for this uses 512-kByte pages. This means there are only
2048 pages per GByte of the address window. The amount of memory a
node can import through SCI is limited by the size of the window and its
utilization. The mismatch between the page sizes of today’s CPUs and the
SCI page size can result in bad utilization of the address window. In case
the imported memory is scattered on the exporting node, the worst case may
happen, where only one MMU page (e.g. 4 kByte on Intel x86 systems) of a
512 kByte SCI page is used. With a 1 GByte address window it is possible
to import 2048 * 4 kByte = 8 MByte in this case.

To avoid the worst case scenario, a chunk should consist of only few con-
tinuous parts (subchunks) of memory. A size of 512 kByte for the subchunks
would be sufficient for optimal usage when all subchunks are aligned to 512-
kByte boundaries in physical memory. Unfortunately, most modern operating
systems have no support to handle such large pieces of physical memory. De-
mand paging needs only one page at a time, resulting in a scattered main
memory where it is not easily possible to find large free contiguous parts.

There are different possibilities to solve this problem. First, simply ignore
it. The result is bad usage of precious space in the physical address window
and limited access to the SCI address space. Second, one can reserve some
memory for SCI usage and withdraw it from the memory management of
the operating system. We selected this solution in the Linux version of the

9. Interfacing SCI Device Drivers to Linux 183

driver. This requires a small patch on Linux, the so-called bigphysarea patch.
It is not very elegant and should be seen as an interim solution, as long as
the third possibility has not been exploited. The third solution would require
major changes to the memory allocator of the operating system, in order to
avoid the scattering of pages throughout the physical address space.

Any piece of memory allocated by the driver in this manner must get a
proper identifier to make it addressable by any client of the driver. Care must
be taken not to free this memory until all users have released it, otherwise
stale references with danger of overwriting memory of other users will occur.
It is useful to have a possibility to withdraw a resource from a client. Without
such a withdraw mechanism, a client—from a local or remote node—could
lock a piece of memory indefinitely.

The Scali driver uses two different identifiers: one generated by the driver
when the memory is allocated and one that can be chosen by the allocator.
It consists of the node number where the chunk resides and two integers,
called user identifier and chunk identifier. Associating these numbers with a
chunk makes it ‘visible’ to other processes. Removing the association from the
chunk withdraws it from all clients. This may need communication between
the drivers on different nodes.

9.2.4 Virtual Mapping

Allocating a piece of memory is only the first step to make it accessible for a
process, additionally it has to be mapped in its address space. The steps for
a mapping differ in the local and remote case. The local case is quite simple.
On an mmap call to the driver, programming the local MMU is all that is
necessary. The problem is to tell the driver with the parameters of the mmap
system call which chunk should be mapped. Only the file descriptor and an
offset into the file can be used for this purpose. The Dolphin and Scali drivers
use these two parameters in different ways.

The Dolphin driver requires to create a new file descriptor for every chunk
of memory. This results in a one-to-one relation between file descriptors and
chunks, removing any ambiguities. In contrast, the Scali driver can associate
more than one chunk with one descriptor. The chunks associated with the
same descriptor are identified by the upper bits of the offset parameter of the
mmap system call. The 32 bits in the offset field are divided into some bits for
the chunk identification and some bits for the ‘real’ offset within the chunk.
Thus, the number of chunks per file descriptor and the chunk size are limited.
How many bits are reserved for these parts is a compile time parameter of
the driver.

To map a remote chunk, another step is necessary: before the MMU can
map some physical addresses into the virtual address space of a process, the
part of the SCI address space has to be mapped into the local physical address
space of the node. This is done by the Address Translation Table (ATT) in
the SCI adapter. The corresponding driver operation is called ‘import remote

184 R. Butenuth, H.-U. Heiss

chunk’. Before the driver can set the entries in the translation table, it has
to know the physical address of the chunk to be imported. For this purpose
it sends a request containing the chunk identifier to the exporting node.
On receipt of this message, the node answers with the physical address and
registers the new client in its data structures. In this way, it can inform
all clients whenever the chunk is withdrawn. After the physical mapping is
established, a handle is given back to the caller. For the Scali driver, this
handle contains the upper bits of the offset needed for the mmap call.

9.2.5 Robustness

Throughout the text some of the possible errors have been mentioned. This
section gives a summary and shows what has been done in the drivers to
cope with the errors and which errors are simply ignored. Another issue is
security, currently ignored by both the Dolphin and the Scali drivers.

The services of a driver can be used from within the kernel by another
driver or from user space by application processes and libraries. In the first
case, one may rely on the correctness of the parameters, at least in some
levels. In the second case, there should be no assumptions about the value
of any parameter. The driver (and the kernel) should survive any call with
any parameter values. Parameter checking here is more difficult than in most
other drivers because it has to consider the local state and the states of other
nodes in the system. One call, e.g. a withdraw operation, can affect all other
nodes.

Parameter checking is done by the Dolphin and Scali drivers; at least
in theory it should not be possible for any application to crash the driver
or operating system. Due to the complexity of the drivers however, one can
still expect bugs in both of them. A crashing process is handled differently
by the drivers. In the Scali driver, all resources owned by the process are
destroyed immediately. In case of memory chunks, this has the same effect
as a withdraw operation, so all other processes sharing this piece of memory
can no longer use it. One exception exists when there is a second process on
the same node sharing the chunk locally. In this case a reference counting
mechanism delays freeing the chunk until this process releases it. Dolphin
handles this in a different way, holding the chunk until all other processes
release it.

Another topic is how failing nodes are handled within an SCI system. The
impact from one crashing node to the rest of the system depends on whether
the node exports or imports pieces of memory. A failure on an importing node
is a problem when the exporter does reference counting on the shares from
all other nodes. In this case, the reference counter is never decremented. To
free the resource, the exporter needs to be notified of the failure in some way.
The Dolphin driver does this by alive checks of all nodes it shares resources
with.

9. Interfacing SCI Device Drivers to Linux 185

A crashing exporter is more critical. When a hardware failure occurs,
where the node goes down completely, all memory operations involving this
node will fail on the hardware level, which can be recognized by other nodes.
A software failure where all hardware is still functional is more critical. In
this case, accesses to shared memory are still possible. The problem arises
after reboot. The freshly booted node has no knowledge about the exported
memory, so this may be used in a total different way. In the long term, this
will result in another failure. Dolphin handles this problem by the alive checks
in the driver, Scali ignores it on the driver level and delegates it to user level
software.

9.3 Why Linux?

There are drivers for Solaris and NT; so one may ask why we ported both
drivers, first the Dolphin driver, then the Scali driver, to Linux. As an opera-
ting system research group, we believe it is important to have the possibility
to look into the details of the operating system and to change parts thereof.
For NT the source code is very difficult to obtain. The same applied for Sola-
ris when we started with SCI; this has changed meanwhile, since the Solaris
source is available to academic sites. Nevertheless, the code of Linux is do-
cumented [1, 7] and there are many people around who can help whenever
questions arise. The only drawback of Linux was the limited support of SMP
systems; its single kernel lock is not very efficient when processes are often in
kernel mode. This has changed with the 2.2 kernel series with its fine grain
locking in the kernel. On the other hand, the Linux kernel is quite efficient,
e.g. the TCP/IP latency over Fast Ethernet is only half of that of Solaris on
the same hardware.

The modular design of the kernel made only minor changes in the kernel
code necessary: the bigphysarea patch and exporting some more symbols at
the module interface. The SCI driver itself is a kernel module, which made
development easy. It was not necessary to compile a new kernel or to reboot
the system for every new compiled driver.

After working with the Dolphin driver on Linux for more than one year, a
Scali system was installed in Paderborn; see Chapter 21. This system contains
a modified Dolphin SCI adapter (second Link Controller), so we could not
use the Dolphin driver on that system. This was the reason to start all over
again and to port the second driver. This driver was designed to be portable.
Building on the experience from porting the Dolphin driver it was possible
to have the first test version after about three weeks. More than two months
of tuning, debugging, and testing followed, resulting in a robust driver, even
more robust than the original Solaris version. (We know of programs that
cause operating system crashes with the Solaris version but run fine with the
Linux version.)

186 R. Butenuth, H.-U. Heiss

hardware

Linux kernel

memory
management

module
interface

SCI driver

open/close mmap ioctl

interrupts

application

memory
access

Fig. 9.2. Interfaces of the driver.

9.4 Interfaces of the Driver

The driver interacts with four other entities (see Figure 9.2): the hardware,
the operating system, user processes, and its counterparts on other nodes.
The interface with the operating system is more complicated than in many
other drivers due to its deep involvement with the memory management.

9.4.1 Hardware

The hardware interface of the driver is more or less the same for the Sola-
ris, NT, and Linux version of the driver. There are abstractions for all the
registers on the card to handle the fact that SCI is big endian and the host
can be little (e.g. x86) or big (e.g. SPARC) endian. On initialization some
interaction with the operating system is necessary. The SCI card must be
visible in the kernel address space and a callback function for interrupts from
the card has to be established. Interrupts are generated for various events,
some of them are errors, arrival of messages from other SCI nodes, and user
generated interrupts. The source of the interrupt must be recognized by the
callback function.

9. Interfacing SCI Device Drivers to Linux 187

9.4.2 Linux

Linux has a small and elegant interface for device drivers, it is very similar
to drivers implemented as modules and drivers integrated into the kernel. On
loading, an initialization function of the driver is called. This and a cleanup
function are the only entry points into the driver known to the kernel at link
time. The driver announces all other entry points by calling back the kernel
with function pointers as arguments. For all drivers needing an interrupt
one of them is the interrupt handler. The same interrupt can be shared by
several drivers. On interrupt, all handlers are called and the drivers have to
recognize whether their hardware has generated it. Most other callbacks are
announced together with one register function, where the driver declares itself
responsible for one major device with a set of ‘methods’, like open, close,
read, write, mmap, ioctl, etc. Thus, a driver can be seen as an object with
methods. It has not to provide all methods; default methods of the kernel are
used then.

The most complicated part is the management of virtual mappings into
the address spaces of user processes. A mapping can come to existence in
different ways: First, by the process itself when it invokes the mmap system
call. Second, by a fork system call where one process with its address space
and all other parts is duplicated. Removal of a mapping is handled by a
reference counter. It is not removed on a close of the file descriptor. Unix
semantics allows a mapping to exist beyond the associated file descriptor’s
lifetime. Even when the file descriptor no longer exists, the mapping is still
accessible. It is destroyed by a call of munmap or on termination of the process.

The removal of a mapping upon a withdraw request from another node
is difficult to implement. The request is received by an interrupt handler,
so everything has to be done in the handler before the answer is sent back
to the requester. This situation—an interrupt handler removes a mapping—
has not been foreseen by the designers of the Linux memory management.
Instead, it is required that the process whose memory mapping has to be
removed, is currently running and therefore can take care of this task. In
most cases one can expect that another process is running when the interrupt
occurs. This situation requires to use a different technique: the mapping is not
removed, instead the code in the handler marks all pages as non-accessible.
This ensures that no memory of the withdrawn mapping is visible to the
user process. Any attempt to read or write in that area is detected by the
MMU and results in a page fault. The page fault is forwarded by Linux to
the device driver (calling the page fault handler function), which returns with
the information ‘page not available’. Eventually the kernel raises a SIGSEGV
to the process. A better solution would be to inform the process immediately
after the withdraw operation, not on access of one of the addresses in the
segment, but there is no standardized mechanism in Unix for this type of
event.

188 R. Butenuth, H.-U. Heiss

9.4.3 User Processes

The interface from user processes to kernel level device drivers is limited to
a small set of functions; the more important ones are: open, close, read,
write, lseek, and mmap. These are sufficient for most standard drivers, but
they offer no possibility to control all the parameters needed to communicate
with the SCI driver. There is one ‘escape function’ that can accomplish this:
ioctl (abbreviation for I/O control). It takes one integer with a command
code and a pointer to memory as parameter. This pointer can reference a
structure with additional parameters, setting no restrictions on the number
and size of parameters. The disadvantage is the inconvenient interface. One
has to pack all parameters into a structure, call the function, and unpack
everything from the structure. This is avoidable by wrapper functions above
and below the ‘ioctl layer’. A user level library is on top of the interface
and a set of functions in the driver breaks up the ioctl call to calls of the
individual functions.

Such a small library is still a very low-level interface. For parallel shared
memory programming more functionality is needed:

– Controlled start and termination of parallel programs.
– Creation of distributed segments with control where the memory is physi-

cally located.
– Synchronization support, at least barrier synchronization and semaphores.
– Global operations, like global sum, min, max, and Boolean operations on

various data types.
– Coordinated interaction between processes, e.g. something like signal/wait.

A lot of this functionality is available in two libraries, Yasmin (Yet Ano-
ther Shared Memory INterface [9]) and SMI (Shared Memory Interface, [4]).
They work on different driver interfaces, Yasmin on top of the Scali driver,
SMI on top of the Dolphin driver. Additionally, both can use Unix shared me-
mory on SMP machines. This is useful for development and tests or whenever
there is no SCI hardware available.

Yasmin and SMI now have their own start mechanisms (early versions
of SMI used an underlying MPI for that purpose), but both of them are
quite simple: a list of machines is given in a file which is read by the start
mechanism that creates the processes on the nodes. In Yasmin this is done
with the secure shell (ssh). In a multi-user environment, there should be a
more comfortable solution, e.g. CCS (see [5] and Chapter 26). Yasmin will
use CCS as its start mechanism as soon as it is available for Linux.

9.4.4 SCI Drivers on Other Nodes

An important interface of a driver is that to its counterparts on other nodes,
which makes it a distributed driver. This is not common practice in the Unix

9. Interfacing SCI Device Drivers to Linux 189

environment, where most distributed services are implemented as user level
daemons2.

The Dolphin card contains a mailbox system which can be used to deliver
small control messages between nodes (see Chapter 3). The messages are
stored in a ring buffer and their delivery is signaled to the driver by an
interrupt. The size of one message is fixed to 64 bytes, which is sufficient for
this task. The Dolphin and Scali driver use this messaging system in quite a
different way.

The approach in the Scali driver is connectionless, conceptionally like an
RPC service. A memory chunk is more or less handled like a server that
replies to requests from clients. There is not much state information in the
‘chunk server’; of course there must be some, e.g. for sending the withdraw
messages mentioned earlier.

The Dolphin driver, with its safety measures, uses a much more complica-
ted, connection-oriented protocol. The driver periodically checks each node to
which it has a connection, whether it is still up and running, and increments
its heartbeat counter. Thus, it always knows when some resources are no lon-
ger available on a logical level even when they are available on the physical
level3. All these fault tolerance provisions make the driver quite complicated
and large. It remains an open question whether or not this would be better
done on a higher level in user space.

9.5 Conclusions

When we started our work with SCI, we underestimated the complexity of
the driver. The first statement from Dolphin about the size of their driver,
about 50,000 lines of code, immediately resulted in the question whether they
had said 5,000. But, as it turned out, they had not! — The Scali driver is
much smaller. It could be designed simpler because Scali does not address the
fault tolerance problem in the driver (their target are parallel machines, not
fault tolerant servers) and because they have no workarounds for the bugs in
the first SCI cards. The complexity of the drivers is the reason for their long
development time. Early versions contained many bugs. Together with bugs
in the early SCI cards they made SCI unstable. This has changed now, Rev.
D cards with LC-2 and the current drivers are quite stable.

The work with two different drivers and the possibility to look into the
operating system dependent parts of the code has shown similar problems
in all combinations, one of them allocation of large, contiguous blocks of

2 There are exceptions, e.g. the NFS server is sometimes implemented as a kernel
thread for performance reasons.

3 Even when the operating system on a remote node has crashed, the memory
may still be reachable through the SCI adapter. This can be fatal when the node
comes up again and the memory is still in use by the remote node.

190 R. Butenuth, H.-U. Heiss

physical memory. In Linux we could solve that problem by a small kernel
modification.

The large common code base for the different systems has saved a lot of
implementation work. Unfortunately, Dolphin and Scali could not agree on
a common driver code base, doubling a lot of work. Many research groups
working with the Dolphin cards could get access to the source code of the
Dolphin driver. On the other hand, the Scali driver is usually available in
binary format only. We think the small, closed group of software developers
is an obstacle to the wide distribution of SCI. The open policy of Myricom
has resulted in a lot of freely available communication libraries for Myrinet
cards [6].

References

1. M. Beck et. al. Linux Kernel Internals. Addison-Wesley, 1997.
2. R. Butenuth, H.-U. Heiss. Project Arminius Homepage.

http://www.uni-paderborn.de/fachbereich/AG/heiss/arminius/
3. Dolphin Interconnect Solutions. The Dolphin SCI Interconnect. White Paper.

Dolphin. http://www.dolphinics.com.
4. M. Dormanns, W. Sprangers, H. Ertl, T. Bemmerl. A Programming Interface

for NUMA Shared-Memory Clusters. Proc. High Performance Computing and
Networking (HPC), pages 608-612, LNCS 1225, Springer, 1997.

5. A. Keller, A. Reinefeld. CCS Resource Management in Networked HPC Sy-
stems. Proc. Heterogeneous Computing Workshop (HCW’98) at IPPS, Orlando,
1998.

6. Myricom. http://www.myricom.com
7. A. Rubini. Linux Device Drivers. First edition, O’Reilly & Associates, 1998.
8. S. J. Ryan. The Design and Implementation of a Portable Driver for Shared

Memory Cluster Adapters. Research Report no. 255, Department of Informatics,
University of Oslo, December 1997.

9. H. Taskin. Synchronisationsoperationen für gemeinsamen Speicher in SCI-
Clustern. Diploma thesis, University of Paderborn, December 1998.

10. SCI Physical Layer API

Volker Lindenstruth1, David B. Gustavson2

1 Institute for High Energy Physics, Schröder Str. 90,
69120 Heidelberg, Germany
email: ti@ihep.uni-heidelberg.de
http://www.ihep.uni-heidelberg.de/

2 SCIzzL/Santa Clara University
1946 Fallen Leaf Lane
Los Altos, CA 94024-7206
email: dbg@SCIzzL.com
http://www.SCIzzL.com/

10.1 Introduction

The IEEE SCI standard defines a shared memory interconnect from the phy-
sical layer to the transport layer. However, no standard software layer is defi-
ned. One might argue that in a distributed shared memory environment little
software is required because once a distributed shared memory (DSM) system
is set up, all accesses can be performed by directly reading/writing from/to
the appropriate target addresses. This is the main advantage of the distri-
buted shared memory architecture. It results in the lowest possible message
passing latency and transaction overhead. No procedures or system services
need to be called in order to exchange data between different nodes in the
system.

Although there is no software required to perform the DSM data exchange,
there is a fair amount of software infrastructure necessary, for example, to
create an appropriate shared memory segment, to export it into the global
shared address space or to import that global shard memory segment into
the local address space of another process. If DMA is to be used, appropriate
structures need to be set up to control the DMA hardware. DSM transactions
can fail resulting in exceptions that have to be handled.

In order to be able to decouple DSM hardware and software development,
the IEEE P1596.9 working group was formed that focused on the architecture
of a generic DSM API for SCI. This API was to be hardware independent and
to support any operating system. The goal of this working group was to define
a DSM software layer, with minimal added overhead, that generalizes the
software interface to necessary hardware functionality such as initialization
of address maps, DMA block moving, error and exception handling and the
like. The requirement of minimal overhead and latency drove this software
interface to become more a hardware abstraction layer than what is typically
considered a driver.

Transaction overhead and latency are very important features in real-time
applications, where distributed shared memory systems are widely used. One

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 191-205, 1999
© Springer-Verlag Berlin Heidelberg 1999

192 V. Lindenstruth, D. Gustavson

particularly demanding field of use is the high-energy-physics community
where very large amounts of data are processed by very large clusters of pro-
cessors at very high transaction rates. For example a detector system STAR
(Solenoidal Tracker At RHIC) [1]) contains a multiprocessor system capa-
ble of handling event or transaction processing rates of up to 100 kHz. Such
transaction rates emphasize the importance of low overhead and latency with
respect to the multiprocessor interconnect. In the case of STAR, SCI was cho-
sen as interconnect standard. Other high energy physics (HEP) systems and
requirements are presented in Chapter 23. In order to allow the development
of the necessary DSM software independent of the availability and specifics
of the necessary SCI hardware, the P1596.9 SCI Physical Layer API working
group defined a software standard which is detailed in the remainder of this
chapter.

It should be noted that, despite the SCI context, this API is useful for any
DSM scenario. Especially, cache coherent and non-coherent environments are
equally supported.

10.1.1 Scope of the Standard

There are two competing goals in defining a low level API such as the SCI
Physical Layer API. One is to absorb as many hardware peculiarities as pos-
sible into the API in order to simplify the higher level software interface. The
other is to keep it as simple as possible in order to allow the highest possible
performance and not to constrain any possible hardware architecture such as
multiple rings connected with bridges, switched networks, multidimensional
meshes or a combination thereof.

In the field of high-speed real-time DSM multiprocessor systems unne-
cessary software overhead cannot be tolerated. Therefore, the scope of this
software standard was drawn such that it does implement all necessary hard-
ware abstraction functions but avoids any additional functionality that would
increase the overhead.

Another class of functionality is related to system level issues. For exam-
ple a DSM multiprocessor cluster is required to be initialized and maintained,
potentially implementing fault tolerance features such as failover. Other is-
sues are global address resolution in a given system, since a given node in
the system needs to be able to find out about the physical location of a given
specific shared object. In the case of heterogeneous systems, endianness con-
version/correction protocols could become necessary. There are many more
related issues. However, they all have in common that they require knowledge
about the given hardware architecture and require additional functions and
protocols to be implemented.

Many discussions were held during the various working group meetings
about what functionality should be included in this API. It soon became
obvious that there are various high level software standards, which satisfy
different requirements, that could benefit from a common DSM hardware

10. SCI Physical Layer API 193

abstraction layer, but that it is also impossible to serve all fields of use at
once. For example, MPI is a message passing standard that could still benefit
from the low message passing overhead and latency that SCI provides. In the
case of MPI, some interface or middle layer software is required to match the
IEEE API to the MPI API. However, such middle layer or meta driver has to
be implemented only once in order to gain complete hardware independence
for any SCI based MPI system if the IEEE API is used as underlying software
standard.

Given this standard being submitted to IEEE and its scope as a hardware
abstraction layer, it did not seem appropriate to try to define, for example,
a standard address resolution protocol or an SCI network topology imple-
menting failover functionality within the scope of this standard. It is left to
the higher level software to implement those functions. However, the SCI
Physical Layer API implements standard methods required to support the
implementation of such functionality.

10.2 SCI Physical Layer API Architecture and Features

This chapter gives an overview of the SCI Physical Layer API. For a detailed
reference, please refer to the draft standard document itself. Figure 10.1 below
shows its overview.

Fig. 10.1. A sketch of the SCI Physical Layer API Architecture. The various data
paths (1) through (5) are detailed in the text.

A user level process interfaces to the API in order to perform all proce-
dural functions. Depending on the operating system, the API may consist
of user level routines and kernel level routines. For example, in the case of
initialization and mapping calls, the user level API routines would call the
protected kernel level API routines (3) which would perform any authentica-
tion and security checking in order to ensure that no unauthorized physical

194 V. Lindenstruth, D. Gustavson

access is granted. Responses to API procedure calls and any exceptions are re-
turned to the user level API routines (4). Initialization such as cold start and
configuration of the SCI interfaces’ address maps is typically also executed in
the API kernel routines (5). This is necessary in order to ensure that no user
program can directly access the security relevant address translation tables
in the interface. The SCI Physical Layer API requires functionality which
is not supported by the hardware to be emulated in software. For example,
should the interface not support DMA functionality, the API is required to
implement that as programmed I/O. This functionality is expected to reside
in the user level part of the API (2). Once a shared memory is set up, the
user level process can perform shared memory transactions without involve-
ment of the API as indicated by path (1). This feature allows the smallest
overhead and latency.

Two general classes of transactions are supported as indicated in Figure
10.2 below.

Fig. 10.2. A sketch of a synchronous transaction (left) with a potential exception,
and a sketch of an asynchronous transaction (right)

Synchronous transactions such as read transactions (Figure 10.2, left)
return after valid read data is available. This results in potential stalling of
the host processor. If an error occurs, an exception is fired (refer to Section
10.2.1). The second class of transactions are asynchronous transactions, which
return as soon as possible without awaiting the completion of the actual
SCI transaction. This is illustrated in the right half of Figure 10.2. Upon
completion of the asynchronous transaction, a specified call-back procedure
is executed. The body of this procedure can be used to implement whatever
synchronization method is desired. Examples of asynchronous transactions
are posted writes or DMA transactions. In the case of posted writes the
call-back procedure would typically act only if an error occurs. In the case
of a DMA transaction, the call-back would notify the host about the DMA
completion status.

Before an SCI transaction can be executed, a certain amount of setup
and control is required. For example, address translation tables may need to
be configured appropriately in order to map an SCI address region into the

10. SCI Physical Layer API 195

process address space. This is implemented based on windows. A window is a
contiguous address region with a defined set of default transaction attributes
and configurations. Those default transaction attributes define whether write
transactions may be posted, a window is write protected, or write transactions
to this given window are executed as broadcast, etc. The appropriate address
translation setup of both the operating system and the SCI interface is part
of the configuration.

10.2.1 Exception Handling

The SCI Physical Layer API interfaces to external hardware and consequently
requires a method for asynchronously handling exceptions, such as link fai-
lures or asynchronous conditions such as failing posted writes, DMA comple-
tion, etc. Since this standard is required to be operating-system independent,
a very simple method is supplied for implementing asynchronous attention
handlers. It is based on the definition of a context structure, allowing the
complete description of the state of the SCI hardware and software interface.
For an asynchronous attention condition, a call-back procedure is executed
which allows user supplied implementation of the exception handler. The ap-
propriate procedure is supplied as a procedure pointer by the higher software
layers and acts much like an interrupt handler.

Some transaction specific exceptions cannot be traced to the calling pro-
cess(or). For example, a posted write transaction exception may occur long
after the write request is completed. Other posted writes may have been exe-
cuted in the meantime. In this case it is not possible to determine the appro-
priate transaction specific call-back procedure. Therefore, a global exception
handler is implemented which will be executed in such a case. However, the
global attention handler can only identify the type of condition, based on the
context structure. Therefore, in order to debug and trace these conditions,
posted transparent writes must be disabled.

Asynchronous transactions such as the chained-mode DMA use call-back
procedures to provide a tool to synchronize with the host program. This is
done by using whatever synchronization method is supported best by the
given operating system (signals, events, semaphores etc.).

In order to allow implementation of checkpoints, a synchronization tran-
saction is provided, which stalls the calling process until all pending transac-
tions have completed and all related potentially pending transaction handlers
were executed, or a specified timeout expired.

10.2.2 Endianness

SCI defines the byte endianness for the physical data transfer to be address-
invariant. The endianness of any given data type is not defined within the
SCI scope. Further it is not possible to implicitly determine the endianness

196 V. Lindenstruth, D. Gustavson

of any given data type within the SCI context. Implicit data conversions
cannot be performed without requiring additional protocol layers that would
inquire about the endianness feature of any node in the system, or without
encapsulating any shared memory data set with an appropriate descriptor.
Therefore, endianness conversions are considered outside the scope of the SCI
Physical Layer API. All data objects are viewed as bags-of-bytes, handled in
an address-invariant fashion, as in the SCI context.

10.3 Supported Data Types

The standard set of integer data types defined in ANSI C has become insuffi-
cient. Further, the exact size of short, int or long is not specified and may
vary from system to system. Given the environment of a distributed shared
memory, it is very important to be able to specify the exact size of a data ob-
ject platform-independently. To eliminate that problem the IEEE Standard
for Shared-Data Formats Optimized for Scalable Coherent Interface (SCI)
Processors [4] was created, which defines a set of standard data objects such
as Doublet (two-byte object) or Quadlet (four-byte object).

All data types used in the SCI API are based on [4]. In order to sup-
port 64-byte and 256-byte transactions two additional data types were added
(Blocklet for 64-byte packets and Qblocklet for 256-byte packets). In case
a compiler does not support the native shared-data formats [4], the specified
data types have to be mocked up by typedef statements in the standard
include file. Standardized preprocessor flags allow conditional code segments
for cases where the compiler does not support all data sizes.

Obviously there are derived data types such as structures defining various
objects such as the DMA chain entries, the chain mode DMA status list,
messages, or the API state in the case of an exception. However, they all are
composed of the set of basic data types described above.

10.4 Miscellaneous Procedures

A canonical set of setup, initialization, and control procedures is defined.
Multiple, possibly different, SCI interfaces are supported in one host. There-
fore, during initialization and setup, the API connects to a simple database
where it can inquire about the availability of SCI interfaces. The client then
selects one or several SCI interfaces and receives the appropriate list of API
entry points for the given hardware. Now the interface can be opened and
configured.

Default exception handlers need to be defined in the case of failing tran-
sactions that cannot be traced back to the originator (such as posted writes).
These exception handlers are interface specific and are set up when the in-
terface is opened.

10. SCI Physical Layer API 197

10.5 Address Translation Model

In order to be able to perform a shared memory transaction on a remote
node, the appropriate local address space needs to be directly accessible to
the remote processor. No software is involved on the local node when the
remote node accesses the given address space region. The advantage of this
implementation is that locally no CPU cycle is used in performing the tran-
saction. The only burden on the local node is the consumption of memory
bandwidth due to remote accesses. However this feature is very dangerous if
the exported memory regions are not chosen carefully. For example, system
critical address regions such as the system interrupt vector table could be
overwritten by a remote node if they were made accessible to the SCI ad-
dress space. It would be very difficult to debug such a system. The solution to
this problem is the segmentation of the address spaces into local, protected
address space and global address segments, which are exported into the SCI
address space.

Figure 10.3 below shows an example of a typical scenario where four
processes on two processors communicate across the SCI global address space.

Fig. 10.3. Architecture of two nodes’ communication across an SCI network

In the example in Figure 10.3, processor 1 runs several processes, which all
may have their own private virtual address space. Note that some operating
systems, such as VxWorks, OS9 and other typical real-time kernels, avoid the
virtual memory concept but rather implement the virtual and physical ad-
dress space to be identical, maybe with some added access control. A defined
shared memory segment resides somewhere in the physical address space of
processor 1. Access to this memory segment is accomplished by mapping the
memory segment into the processes’ address spaces, which is typically done
by setting up the appropriate MMU page tables.

198 V. Lindenstruth, D. Gustavson

In order for this memory segment to be made available in the SCI global
address space, called the transport space, the local SCI interface needs to be
configured to map requests to a specified SCI address window to the local
address space corresponding to the shared exported local shared memory.
This enables other SCI nodes to directly access any data word within the
given shared memory. There is no constraint where the given shared object
is to reside in the SCI address space.

The shared memory segment may be fragmented. There are various possi-
ble scenarios dealing with this issue. One is to simply export the fragmented
memory segment as such into the SCI transport space and to implement a
higher-level protocol that distributes the fragmentation information to all
nodes involved. Another scenario is to hide local memory fragmentation by
programming the appropriate address translation tables of the SCI interface
such that the locally fragmented shared memory is exported into a contiguous
SCI address window. The advantage of this scenario is that every shared me-
mory segment can be assumed contiguous in the transport space. The SCI
Physical Layer API standard does not make any assumptions or restrictions
here, but rather allows a local contiguous memory region to be exported into
the SCI address space. In the case of a fragmented local memory and the
first scenario, the appropriate export procedures have to be executed once
per segment.

In order for a remote node to access the given shared memory segment,
it needs to configure the SCI interface requester to map the appropriate
SCI address window(s) into the local physical address space, which then is
mapped into the appropriate process’ address space.

Figure 10.4 shows a sketch of the various address spaces involved in a
distributed shared memory system. The appropriate API calls are also indi-
cated. The fragmented shared memory segment (SHM) resides in the physical
memory of processor 1. It is mapped into the private address spaces of the
local processes. Remote access is granted by exporting it into the SCI trans-
port space of the given local node. Access to this segment by a remote node
requires the given SCI address window to be mapped into the processor’s
local address space and this region to be mapped into the appropriate pro-
cess’ private address space. This functionality is called importing of an SCI
address segment.

The shared address segment may also be an I/O region. This feature is
useful for real-time systems, where I/O devices (for example, trigger boxes
and readout devices) are controlled directly by a remote node. From the
software point of view there is no difference since in both cases an address
segment is handled. The only software-visible difference would be that caching
or even only read-ahead gathering would be disabled in the case of the I/O
segment.

10. SCI Physical Layer API 199

Fig. 10.4. A sketch of the various address spaces and mappings involved in a
distributed shared memory system

10.5.1 Global Object Identifier

During the discussion above it became obvious that there can be a large num-
ber of shared objects within a distributed memory system. Shared memory
objects may be created and referenced by different processes and proces-
sors. This requires a method for unambiguously identifying the given shared
resource, which should be system-wide unique. One system-wide unique iden-
tifier is the 64-bit SCI address. However, this address also reflects the physical
location of this object. Therefore, any changes to the architecture of the sy-
stem would result in changing object identifiers. Another example is the case
of fault tolerant systems where critical shared data structures may have to
exist as redundant copies in order to be able to simply re-map shared global
objects in case one critical node becomes unavailable. Based on a unique glo-
bal object identifier, which is independent of its physical address, every node
can inquire about the potentially changed location of a shared resource and
receive the appropriate physical location (SCI address).

In order to keep the identification of the resource as general and as flexible
as possible, it was implemented as a 128-bit ID. Since it is only required for
setup and control procedures, there is little overhead involved with such a
large ID. With 128 available bits for identification of a given shared memory
object, its ID can be made unique system-wide.

200 V. Lindenstruth, D. Gustavson

10.5.2 SCI Global Address Resolution

There is no restriction as to where a given shared object is to be exported
in the SCI address space. In order to be able to map a defined global shared
memory object based on its ID, some address resolution method needs to be
implemented. There are two major scenarios. One defines a static SCI address
map which is known to all nodes. A more generic and much more flexible
scenario implements an SCI global address resolution. However, defining a
standard address resolution protocol would be beyond the defined scope of
the standard. On the other hand, all basic methods needed to implement
such functionality are provided in form of a standard, basic message passing
API (refer to Section 10.9).

Based on that message passing functionality, the global address resolu-
tion can be implemented by the following convention. Each node exporting
or importing at least one shared memory segment is required to listen (re-
fer to Section 10.9) at the defined address resolution port. A message sent
to the specified port contains the ID of the memory segment in question.
Upon receipt of such a request, a defined response is generated containing
the physical SCI base address of the object.

Here the requester still needs to know the appropriate SCI node ID, which
exports the shared memory. This can be performed by simply polling all
available SCI nodes. A more elegant implementation is a distributed shared
memory address resolution server which maintains knowledge of all available
shared memories and can be contacted by any node seeking address resolu-
tion. Therefore, if a given node receives an address resolution request for a
shared memory segment not defined locally, but known, it shall return the
corresponding SCI base address in a proper response message. In the case
that it does not know the given object, it shall return another host ID that
might act as shared memory address resolution server.

Those primitives allow implementation of the necessary address resolution
functionality without defining a specific protocol but merely providing all
necessary mechanisms.

10.6 Shared Memory Transactions

Once the shared memory system is set up, data can be read or written by
directly accessing the appropriate addresses, which does not require any pro-
gramming interface to be defined. There are appropriate procedures and data
types defined (refer to Section 10.3) allowing transactions of defined size from
1 byte to 256 bytes. This enables one to perform SCI transactions within as-
signment statements.

However, it is not possible to specify further arguments within an assig-
nment statement. A specific group of shared memory transactions is defined
that allows one to specify further arguments such as the transaction size,

10. SCI Physical Layer API 201

transaction attributes, and a specific exception handler to be used only for
the given transaction.

A special group of transactions within the class of shared memory tran-
sactions are lock transactions. SCI supports a set of atomic transactions that
are executed on the target node. In order to provide a programming interface
for those atomic transactions, appropriate functions are defined, where the
lock command and lock argument are passed in the function’s argument list,
and the result of the atomic transaction is returned to the caller as in the
case of any other shared memory read function.

Fig. 10.5. Some examples of selected byte commands

Figure 10.5 shows some shared memory code examples. Lines 1 and 2
show a particular feature of the IEEE API. The single-byte write transac-
tion (SCIWrByte) could also have been implemented as pointer assignment,
rather than using the stated procedure call. This procedural semantic does
not impose any unnecessary overhead since it is translated into the appro-
priate zero overhead assignment statement as indicated by the preprocessor
macro in line 1, which is typically part of the standard include file. There
is an appropriate data type and procedure defined for all standard data si-
zes ranging from one byte to 256 bytes. Although remote shared memory
transactions could be implemented as a pointer assignment statement in the
source code, the stated form is recommended. This functionality allows one
to port even a shared memory based application onto an architecture that
does not support shared memory transactions. In that case procedures like
SCIWrSb would be truly procedures implementing the appropriate put and
get functionality. Such implementations would result in potentially signifi-
cantly larger overhead. However, shared memory software written according
to this programming paradigm can be run without modification on a non-
shared memory platform, provided the appropriately modified API is made
available.

Line 3 in Figure 10.5 shows a write transaction that uses a non standard
object size such as 15 bytes. The appropriate read transaction (SCIRdSb)
shows the appropriate counter part. It returns a defined 16-byte object, which
is filled with bytecount bytes returned from the target node. The atomic
transaction shown in line 5 (SCILockSb) returns the result of the lock request
and receives as argument the target address, object size, a pointer to the lock

202 V. Lindenstruth, D. Gustavson

argument of appropriate size and the lock command. A specific attention
handler or call-back procedure is specified as indicated.

10.7 Packet Transactions

Most known SCI interfaces do not support the full set of defined SCI transac-
tions. Therefore an optional packet transaction is implemented that allows
one to send an SCI packet to a defined target node. The packet argument is
a defined data structure. A possible response is identified based on the tran-
saction ID, which is assigned by the API, and forwarded back to the host
program using the specified call-back procedure.

10.8 Block Transactions

The SCI standard supports moving large blocks of data by implementing
block-transfer hints within the packet headers, indicating to intermediate
bridges the intent to send a stream of packets. These intermediate agents
may prefetch data based on the DMA controller’s announced intent. In order
to utilize this functionality, the SCI client software must be able to communi-
cate the intent to move blocks of data. On the other hand, if the available SCI
interface hardware supports DMA functionality, it permits the block move
with very little software overhead. There are many different chain-mode DMA
engines defined. This standard tries to abstract the DMA programming inter-
face without constraining any existing hardware or incurring large additional
software overhead.

Figure 10.6 shows a sketch of the chain-mode DMA descriptor architec-
ture. It uses the IEEE P1285 [5] concept, but removes the specifics with
respect to the mass storage framework. All chain descriptors are adjacent in
memory, forming a DMA chained command list block. Each chained com-
mand is a defined fixed length 32-byte structure. However, there is a defined
command allowing implementation of several disjoint chained command list
blocks. The number of these blocks, or chain command descriptors is only
limited by the amount of available memory. The end of a chained DMA list
is defined by a specific command as shown in Figure 10.6.

There is also an optional array of status descriptors defined. The number
of status descriptors is fixed during the transaction. The DMA engine will
use the defined status descriptor field like a cyclic buffer. Therefore, the last
N status entries are available for review by the caller. Each chain command
may cause a status entry depending on the setting of a group of mode bits
within the structure. In the event of an error, a status entry is always written.
The specified exception handler may be triggered as well.

Some SCI hardware may not support the specific chain command format.
Therefore, a specific procedure is provided that translates the input chain

10. SCI Physical Layer API 203

Fig. 10.6. A sketch of the chain-mode DMA descriptor architecture

descriptor list of the block move procedure into the native chain command
format by generating an appropriate internal chain list. A hashing method
is implemented avoiding the same descriptor chain being translated multiple
times should it be used several times.

All DMA block move transactions are posted using the call-back mecha-
nism for asynchronous synchronization. This is best applied in the typical
hardware implementation, utilizing a DMA controller. If synchronous block
move functionality is required, it can be implemented using the call-back pro-
cedure and semaphores supported by the given operating system. Another
scenario featuring minimal latency is the use of the appropriate status list
entry as a mailbox flag, which is polled by the CPU and set by a specific
chain DMA command.

10.9 Message Passing Transactions

As already discussed in Section 10.5.2, a standard message passing API is
required to implement higher level protocols. The IEEE Control and Status
Register (CSR) Architecture standard [2] defines two standard CSR addresses
for message passing, one for request messages and one for response messages.
The separation of request and response messages is necessary in order to
avoid possible deadlocks.

The optional, defined messaging protocol requires two message queues to
be implemented in hardware or software. All required flow control preventing
the loss of messages must be handled by the SCI interface and the API. Two
FIFOs, which can store a minimum of 64 bytes, are required for the request
and response queues in the local address space. If they are exported into the
SCI address spaces accordingly, all SCI write transactions will write to these
FIFOs. The FIFO full status can produce an appropriate retry message to
the SCI requester.

204 V. Lindenstruth, D. Gustavson

A defined message is transmitted to a target by sending it to a specified
sub-address (refer to [2]) of the SCI target node. The message is then routed
to the appropriate process by virtue of its message port. The receiving node
must be listening to a message with the defined port. This is done by execu-
ting a transaction specifying the message port and the appropriate exception
handler, which is called every time an appropriate message is received. This
message handler then receives the message as argument.

A message is a fixed length data block of type request, response or in-
terrupt, indicated by the type bits (T), as sketched in Figure 10.7. Three
fixed length sizes (16, 64 and 256 bytes) are supported and defined by the bit
field labeled S. The message port is a 28-bit number that is segmented into 4
segments (port A - port D), similar to an Internet number. The following 16
bits define the sender’s SCI node ID, which is required to be able to return
messages to the sender. The remaining part of the message structure is the
payload (b[0] - b[57]).

Fig. 10.7. The layout of a standard 64-byte SCI message

The IEEE Control and Status Register (CSR) Architecture standard [2]
also defines a CSR register that causes a local interrupt to fire if it is written
to. A specific message structure is defined similar to the one sketched in
Figure 10.7, which is generated for every interrupt fired. User processes may
listen to such interrupt messages similar to listening to a specific message
port.

10.10 Cache Transactions

SCI networks may be cache coherent. Whether or not a given transaction is
cacheable is determined by the window attributes of the appropriate address.
The cache control functionality is optional. In the case of a non-coherent
implementation, the procedures return signaling that this feature is not sup-
ported.

If a given memory region is used for message passing, it is necessary to
be able to flush the related caches in order to ensure that a given message
is actually visible to the remote nodes. Therefore, it is necessary to provide

10. SCI Physical Layer API 205

at least some cache control functionality. The SCI Physical Layer API pro-
vides a set of procedures that provide the SCI cache control functionality,
allowing one to load, flush, purge, cleanse, and delete a cache line. All cache
transactions are based on a local address which identifies the cache line.

There is some need for cache control even in the case of strictly non-
coherent implementations because also non-coherent hardware typically im-
plements speculative read ahead and write posting. Whether or not specula-
tive read ahead is allowed is determined by the cache enable bits. For example,
only if the given address window is marked cacheable, may speculative read
ahead be executed. In order to avoid unintended side effects when accessing
CSR or other I/O registers, such address windows have to be defined non-
cacheable. In the case of enabled posted writes it is necessary to be able to
ensure the posted write buffers are empty. This is implemented using the
cache flush procedure, which has to be provided in any case.

10.11 Conclusions

The software standard described here is a zero transaction overhead, gene-
ral purpose distributed shared memory API that was designed for SCI. It
is described best as general purpose shared memory hardware abstraction
layer and is ideally suited as core API for higher level software architectures
such as MPI [6] or VI Architecture [7]. However, it is also useful as a native
layer because it implements all functionality necessary to set up and run a
distributed shared memory system.

References

1. J. W. Harris and the STAR Collaboration. The STAR Experiment at the Re-
lativistic Heavy Ion Collider. Nucl. Phys., A566, 277c, 1994.

2. IEEE Standard 1212-1991. IEEE Standard Control and Status Register (CSR)
Architecture for Microcomputer Buses (ANSI). ISBN 1-55937-352-0. 1993.

3. IEEE Standard 1596-1992. Standard for Scalable Coherent Interface
(ANSI/IEEE). ISBN 1-55937-222-2. 1993.

4. IEEE Standard 1596.5-1993. Standard for Shared-Data Formats Optimized for
Scalable Coherent Interface Processors (ANSI/IEEE). ISBN 1-55937-354-7.
1994.

5. IEEE Standard Working Group P1285. IEEE Standard Proposal for Scalable
Storage Interface. This standard is not yet published. The latest draft is avai-
lable at the working group’s homepage:
http://www.SCIzzL.com/P1285/index.html.

6. The Message Passing Interface (MPI) standard. This standard is maintained
by the MPI Forum and is available on the World Wide Web:
http://www.mcs.anl.gov/mpi/index.html.

7. Virtual Interface Architecture. This draft standard is maintained by the VI
Architecture Forum and is available on the World Wide Web:
http://www.viarch.org.

Part V

Message Passing Libraries

While the SCI services can be used directly by application programmers,
higher-level message passing libraries provide a more suitable application
programming interface for portable codes. This part presents projects on the
design and implementation of BSD sockets, TCP/IP and the high-level mes-
sage passing environments PVM and MPI—all of them optimally exploiting
the fast SCI communication network.

Chapter 11 describes the SCI socket library SSLib developed at Techni-
sche Universität München (TUM). Compatibility to existing standards and
maximum performance were the two major aims of this project. As a result,
the SSLib provides exactly the application programming interface as the po-
pular Berkeley (BSD) sockets, but based on the distributed shared memory
mechanisms of SCI. Rather than building on the TCP/IP code in kernel
space, the TUM researchers have re-implemented the data transfer protocol
to run in user space. This results in a much improved communication latency.

Another approach has been taken by the Paderborn project team which
reports on a TCP/IP implementation for Linux in Chapter 12. Instead of
replacing TCP by a user-level transport protocol, their Scalable Coherent IP
(SCIP) has been implemented as a Linux device driver. Because only the IP
protocol has been adapted, few lines of code needed to be rewritten.

The PVM-SCI package in Chapter 13 is a lean implementation as well.
It builds on the latest PVM release 3.4, which has been extended by some
software to make use of the DSM capabilities of SCI when sending messages
with the “PvmRouteDirect” option. When this option is not set, the standard
PVM communication (via the two PVM daemons) is used. PVM-SCI is fully
compatible to the standard PVM. Existing legacy applications just need to
be re-compiled to make use of PVM-SCI. As a special feature, PVM-SCI
automatically downgrades to other interconnects (like Fast Ethernet or ATM)
when SCI is not available. This is useful in heterogeneous clusters and when
communicating with front-end machines outside the cluster.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 207-208, 1999
© Springer-Verlag Berlin Heidelberg 1999

208 Message Passing Libraries

Compared to the more research-oriented PVM-SCI software, the ScaMPI
library described in Chapter 14 is a full fledged commercial MPI product. Up
to date, ScaMPI is probably the most efficient MPI implementation on SCI.
According to the software developers at Scali A.S., ScaMPI is tuned towards
providing high communication bandwidth and low latency, and it is flexible in
the choice of the transport medium. Moreover, ScaMPI is thread-safe, which
is necessary on multi-processor nodes when different threads constituting a
single MPI process request services from the MPI library.

11. SCI Sockets Library

Hermann Hellwagner1, Josef Weidendorfer2

1 Institute of Information Technology, University of Klagenfurt
A–9020 Klagenfurt, Austria
email: hermann.hellwagner@uni-klu.ac.at
http://www.itec.uni-klu.ac.at/

2 Institut für Informatik, Technische Universität München
D–80290 München, Germany
email: josef.weidendorfer@in.tum.de
http://wwwbode.in.tum.de/

11.1 Introduction

11.1.1 Rationale

Sockets [9] have become a widespread programming interface for distributed
computing. A wealth of legacy applications and higher-level communication
libraries relies on this API. Sockets also provide the communication infra-
structure for parallel processing systems, e.g., MPI and PVM, in workstation
cluster environments. An obvious way to support those applications on a
compute cluster with a new-generation, high-speed interconnect such as SCI,
is therefore to port the sockets API onto this platform.

In commodity networks like Fast Ethernet or ATM, the standard data
transfer protocols underlying the sockets API are TCP/IP and UDP/IP.
These are operating-system (OS) level, heavy-weight protocol stacks designed
for wide-area communication over unreliable networks. They usually provide
good sustained throughput, but fail to achieve low communication latencies.

For cluster-based parallel computing, which employs local area or system
area networks, potentially with reliability supported in hardware, and where
low latency is of great importance [17], the TCP/IP suite of protocols provi-
des insufficient performance. As analyzed in depth in [12], this is due to the
high per-packet processing overheads, incurred primarily by the multi-layer
protocol organization, different data abstractions, layer transitions, copying
costs, complicated memory management (mbufs), and wide area-specific pro-
cessing requirements such as in-packet checksums for end-to-end reliability,
computed by the communication software.

Communication systems for recent high-speed cluster interconnects there-
fore avoid such overheads as far as possible. Many such systems provide a new
API with programming abstractions similar to the underlying interconnect
hardware in order to realize highest possible communication performance.
Examples are Active Messages [16], native U-Net communication [18], Illi-
nois Fast Messages [11], and the Universal Message Passing library for the
Digital Memory Channel [5][8]. The Virtual Interface (VI) Architecture [3]

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 209-229, 1999
© Springer-Verlag Berlin Heidelberg 1999

210 H. Hellwagner, J. Weidendorfer

has recently emerged as a standard for user-level cluster communication; the
proposed API is not part of the VI Architecture specification, though.

In order to maintain compatibility with existing applications, implemen-
tations of a standard API like sockets must adopt the alternative solution of
dealing with the problem of high processing overhead [12]: changing the com-
munication protocol and its implementation so that the native properties and
communication mechanisms of the network are being exploited for improved
performance. Such “fast sockets” implementations have been developed, e.g.,
for Myrinet NOWs [12][11][19], the SHRIMP multicomputer [1], U-Net-based
networks [18], for a VI Architecture-based system area network [15], as well
as for SCI compute clusters [13][14].

The software system described in this chapter, the SCI Sockets Library
(SSLib), also falls into the latter category. SSLib is a user-level library ex-
porting the full Berkeley (BSD) sockets API [9], but internally making direct
use of the low-latency communication mechanisms of SCI, most importantly
the distributed shared memory (DSM).

The design and implementation of SCI Sockets was guided by two prin-
cipal requirements: compatibility and performance. Compatibility denotes
our goal to provide full support for applications based on standard, OS-level
sockets. That is, SSLib should be able to become the basic infrastructure
for parallel processing software (e.g., MPI and PVM) and legacy network
applications using sockets, and thus open up SCI clusters for a wide base of
parallel and distributed software systems. The second goal was to deliver as
much of the raw SCI communication performance as possible to the applica-
tions. Therefore, rather than to reuse and adapt TCP/IP in kernel space, as
described, e.g., in chapter 12, we decided to rewrite the data transfer proto-
cols and run them in user space, such that the native SCI features are fully
exploited for high-performance communication.

11.1.2 Overview

The description of the SCI Sockets communication layer in the remainder
of this chapter is organized as follows. In Section 11.2, the features and the
design of the SCI Sockets system are presented. Section 11.3 deals with some
implementation issues. Functional tests and performance results are given in
Section 11.4. Related work is addressed in Section 11.5 and conclusions are
given in Section 11.6. The SSLib system is fully described in [20].

11.2 Features and Design

11.2.1 Features

The SCI Sockets system has been designed to conform to the semantics of the
standard Berkeley sockets API as closely as possible. Both stream sockets and

11. SCI Sockets Library 211

datagram sockets are supported. SCI sockets and regular sockets can coexist,
with SCI sockets being created by default. Currently, SCI sockets are used
for communication within the SCI cluster only. In other words, there is no
routing functionality from SCI to the TCP/IP world (or vice versa).

The SCI Sockets software provides wrappers to all Unix system calls re-
ferring to BSD sockets. For example, the SSLib write function makes a table
lookup to detect if an SCI socket is concerned; if not, the original write is
called. Currently, this is done by including a special header file; C macros
are used for renaming. A write call in the application is translated to a call
to ss write. Although there are many ways to achieve the desired effect, we
chose this method as it apparently is the most portable solution. Programs
need to be recompiled, however, to be able to take advantage of SCI sockets.

Notable SSLib features—that are not supported by most other user-level
socket implementations—include:

– special handling of fork and exec system calls at user level, in order to
facilitate, e.g., secure sharing of SCI sockets and access synchronization
between processes;

– support of the select call, such that the call waits on SCI sockets and
kernel file descriptors simultaneously;

– support of C stdio runtime functions, in case a networking application
makes use of them to refer to sockets;

– support of out-of-band (OOB) data known from TCP;
– asynchronous I/O;
– transparent switching among load/store-based and messaging-based data

transfer mechanisms, whichever is more efficient. (These modes are called
PIO (Programmed I/O) and DMA (Direct Memory Access), respectively,
in Chapter 3.)

The SCI Sockets software currently runs on Solaris, Linux and Reliant
Unix platforms using Dolphin SBus-SCI and PCI-SCI adapter cards (see
Chapter 3). The software is designed to be portable as far as possible: the
platform-dependent functionality (specific implementation of the DSM and
other communication mechanisms) is hidden in a low-level communication
layer exporting a well-defined API to platform-independent, higher-level fun-
ctions (cf. Section 11.3).

11.2.2 Components

The functions provided by the sockets API are usually invoked through direct
calls to the underlying OS, entailing expensive context switches between user
and kernel spaces. For low-overhead and low-latency communication, such
context switches have to be avoided in time-critical communication paths.
Therefore, in the SCI Sockets system, as much communication functionality
as possible is provided in a library linked to the application. This library
proper is called SCI Sockets Library (SSLib) and is responsible for the actual

212 H. Hellwagner, J. Weidendorfer

data transfers over SCI sockets, mostly via reads and writes. Such system
calls are intercepted by the library if they address SCI sockets or if they may
have an impact on the further use of SCI sockets. An example of the latter
case occurs when a process owning an SCI socket forks another process so
that subsequently both processes may access the socket concurrently.

Not all aspects of sockets can be handled by a library alone. Some cen-
tral management is required, e.g., for port addressing or UDP simulation.
Therefore, each node running an application component using SCI sockets,
also runs a special daemon process called SCI Sockets Daemon (SSD). The
responsibilities of the SSD include:

– establishing and terminating SCI socket connections;
– maintaining status of SCI socket connections;
– managing port addresses;
– providing support for specific system calls such as select, fork, or exec;
– controlling sharing of, and synchronizing access to, SCI socket connections;
– buffering incoming UDP packets.

An SSD is invoked by the local SSLib to handle all those management
tasks pertaining to SCI sockets and processes that use SCI sockets. We do not
regard connection setup and tear-down as time critical; thus, the additional
complexity and costs of this “detour” to the SSD are held to be tolerable. The
benefit of this scheme is that the SSLib and SSD can cooperatively implement
the full sockets functionality usually realized by the OS.

11.2.3 Communication via the SSLib

We first describe the low-overhead, low-latency data transfer mechanism em-
ployed by SSLib. This mechanism exploits the remote memory access (RMA)
facilities of SCI DSM and, more specifically, the efficient remote write capabi-
lities of the Dolphin SCI adapter cards: buffering, combining, and streaming
(see Chapter 3). The term buffered writes is used in the following to refer to
these capabilities. Many message-passing libraries based on the Dolphin SCI
devices, among them those described in other chapters of this book, utilize
the same scheme to transfer data.

The data transfer is based on a shared data structure called the Receive
Ring Buffer (RRB) in the sequel. The RRB is a ring structure where the
sending (writing) node writes data into and the receiving (reading) node
searches for, and copies out, data. The RRB physically resides in the local
memory of the receiving node, made up of pages locked in memory; the RRB
is exported into the SCI DSM, and imported and mapped into the address
space of the sending process. This is depicted for bidirectional communication
between nodes in Figure 11.1. Both RRBs are located in user space so that
the OS need not be involved in transmitting data.

An RRB and an associated address mapping are set up for each sender
and receiver pair. A bidirectional SCI socket connection thus consists of two

11. SCI Sockets Library 213

j

Buffered writes

iNode Node

RRB
mapped RRB

RRB
mappedRRB

j

i

j

i

Fig. 11.1. Communication areas between nodes in SCI DSM

mutually mapped RRBs as shown in the figure. The setup procedure com-
prises three steps for each direction: creation of an SCI DSM segment by
the receiver to host the RRB; export of the shared segment into the sending
node’s PCI address space; and mapping of the RRB into the virtual address
spaces of the sending and receiving processes. As described below, this setup
is performed on demand, when SCI sockets are established by the involved
SSDs.

Once established, an RRB is maintained and used (for unidirectional data
transfers) as follows (see Figure 11.2). A start pointer and an end pointer,
residing in user space as well and shared among the sender and the receiver,
delimit the RRB area that contains valid (sent or written) data. Before writ-
ing data, the sender checks these pointers and blocks in case the RRB is full,
i.e., if an RRB overflow would occur as a result of writing the data block.
Similarly, the receiver checks the pointers before copying data out and blocks
if the RRB is empty. This implements a simple flow control mechanism.

After having written data into the RRB, the sender updates the end
pointer; after having read data out of the RRB, the receiver updates the
start pointer. As shown in Figure 11.2, the end pointer physically resides
on the receiving node, with a local copy being maintained by the sender.
Vice versa, the start pointer is physically located in the sender’s memory,
with a local copy at the receiver. This choice of the physical locations of the
pointers allows them to be updated with buffered writes, while their local
copies allow local read operations to be used (i.e., inefficient remote reads
to be avoided) when the pointers need to be checked before data transfers.
Using this scheme, only remote write operations at user level are involved in
the actual data transfer over SCI sockets.

Transmitting data into and out of the RRB as shown above, involves one
extra copy operation. Clearly, a user-level communication layer like SSLib,
which aims at very low latencies, should avoid copying whenever possible.
Unfortunately, the semantics of the original BSD sockets interface requires
a copy operation to be performed, which transfers the data from a buffer in
the sender’s address space to the actual send buffer, and vice versa at the

214 H. Hellwagner, J. Weidendorfer

End ptr copy

Start ptr copyStart ptr mapped

Sender Receiver

Start pointer

End ptr mapped

RRB mapped RRB

End pointer
Pointers

Fig. 11.2. Maintenance and use of RRBs (unidirectional case)

receiver’s side. Originally, with TCP/IP, this intermediate buffer is in kernel
space; in SSLib, this buffer is the RRB.

The only opportunity to avoid the extra copy is the situation when the
receiver blocks in a receive call issued prior to the arrival of the data; this
is called receive posting in [12]. In this case, the user-supplied, well-known
receive buffer would have to be mapped into the sender’s address space (via
the SCI DSM) to enable direct data delivery, meaning that regular virtual
memory would have to be treated like exported SCI memory. Apart from
considerably complicating the design and implementation of SCI Sockets,
this would require OS support on each receive call, e.g., for locking down the
receive buffer’s pages in memory, which contradicts low latencies. Therefore,
we chose to always copy data via the RRB.

11.2.4 Connection Setup

Connections are set up by the SSDs. We have to distinguish the TCP-like
case and the UDP-like case, i.e., stream and datagram sockets, respectively.

A TCP-like connection results from applications on two nodes calling
the functions listen/accept and connect, respectively. As illustrated in
Figure 11.3, the SSLibs involved notify the SSDs on their nodes which in
turn contact each other by means of an initially established DSM segment
mapping. Each SSD creates and exports a DSM segment (DSMS) to host
the RRB for data reception. After having exchanged some information (e.g.,
the IDs of the created DSMSs and the port numbers), the SSDs hand over
the information to their respective applications (SSLibs). These mutually
map the DSMSs, at which point the data transfer can begin. As indicated
in the figure, early reads or writes are postponed until after this point.
Conforming to the BSD sockets semantics, the connect call returns as soon
as the connect request has been delivered to the communication partner. It
must be noted that the entire process is solely based on communication over
SCI. No auxiliary TCP connection (established over Ethernet, for instance)
is required; see Section 11.3.1.

11. SCI Sockets Library 215

connect()

Request connection

read()/write()

Export DSMS i

Done

accept()

Map DSMS i, DSMS j

Map DSMS i, DSMS j read()/write()

read()/write() read()/write()

Accept connection

Export DSMS j

Application i Application jSSD i SSD j

Fig. 11.3. TCP connection setup

Datagram sockets, i.e., UDP-like communications, need special treatment
and pose some difficulties in SCI networks. With datagram sockets, there is
no dedicated point-to-point connection and no explicit connection establish-
ment step. Data can be sent without the need to know the receiver in advance.
Furthermore, many processes can retrieve data from one endpoint, specified
by a UDP port. This is in conflict to our SCI DSM-based communication mo-
del which relies on mutually mapped, dedicated DSMSs (hosting the RRBs)
for data delivery, as described earlier.

The solution is that, for a UDP connection, an SSD initially plays the
role of the receiving process, supplying receive buffer space (an RRB) and
buffering incoming packets as needed. If an application later requests availa-
ble UDP data, the ID of the DSMSs for the corresponding UDP connection
is handed over to this application. All further data transfers referring to the
same UDP port are treated according to the TCP case. In other words, UDP
data are sent over a temporary, dedicated (TCP-like) connection. Other ap-
plications requesting data from the same UDP port (and sent by the same
remote application) do not receive anything. Since datagram sockets are un-
reliable anyway, this is not considered a semantics violation. A fixed amount
of SCI resources is used for datagram sockets. If a new UDP connection is
requested and all the resources have been consumed, the SSD tears down
the oldest UDP connection in order to build the new one, possibly throwing
away buffered data. Again, due to the unreliability of datagram sockets, this
behavior is considered acceptable.

216 H. Hellwagner, J. Weidendorfer

11.2.5 Handling Special System Calls

System calls pertaining to sockets directly or indirectly, have to be intercepted
and treated by the SCI Sockets software. One of the most complex system
calls of this type is the select call. In our case, this function has to deal
with regular file descriptors, with OS-level sockets, and with SCI sockets. The
descriptors have to be monitored in order to detect which ones are capable of
doing input or output, or which ones have exceptional conditions to report,
e.g., out-of-band data. The calling process is possibly being put to sleep if
none of the descriptors is ready.

As long as only SCI sockets are concerned by a select, the call can be
handled within the SCI Sockets software by a call to an appropriate low-
level wait function. If in contrast a process simultaneously waits on an OS-
level condition and an SCI condition, the select supplied by the OS has
to be called by the SSLib. Once a requested SCI condition arrives during
the select system call, a signal has to be generated to interrupt the call.
This is either effected by the low-level part of the SSLib when data arrives
on an SCI socket, or by the SSD when, e.g., a connect request arrives on a
listening socket or connection establishment has completed successfully. The
conditions requiring asynchronous signaling are reported to the SSD by the
SSLib prior to the select call.

Some system calls do not directly operate on SCI socket descriptors, yet
have to be intercepted because they affect the further use of SCI sockets. The
most important functions of this type are fork and exec.

If a process calls fork, it is duplicated; open file descriptors are valid
both in the parent and child processes. This semantics has to hold for SCI
sockets as well, so SCI socket resources have to be duplicated during fork. As
a consequence, data structures (the RRBs) become shared between the two
processes; access to them has to be synchronized subsequently. Furthermore,
administrative data maintained for a connection, e.g., start and end pointers,
have to stay consistent between the two processes. These two issues are solved
by means of the SSD as follows. Each SCI socket has an owner which, in the
regular case, is the application process having exclusive access to the socket.
In case of a fork, the SSLib of the owner process intercepts the call, marks
its SCI sockets as shared, hands over their ownership and resources to the
SSD, and issues the fork system call. If subsequently one of the participating
processes accesses an SCI socket, it has to request the ownership from the
SSD before being permitted to proceed. The owning process receives and
returns up-to-date and consistent values of the shared data and pointers. The
SSD employs a semaphore to synchronize accesses to a shared SCI socket,
potentially blocking concurrent accesses by other processes. A user process
retrieves exclusive access to an SCI socket only after all other peer processes
have closed the socket. This behavior is illustrated in Figure 11.4.

Clearly, due to the synchronization, data transfers over shared SCI sockets
are much less efficient than over non-shared ones. Yet, this approach repre-

11. SCI Sockets Library 217

fork()

send()

send()

close()

send()

accept() Accept connection

Child (2) Parent (1)

Send data

Done

Wait for Parent (1)
to be done

OK to Parent(1)

OK to Child (2)

Done

to Child (2)
Return control

SSDProcess (1)

Send data

Install semaphore for
Process (1) SCI socket

Fig. 11.4. Forking a process and sharing a connection

218 H. Hellwagner, J. Weidendorfer

sents a viable solution to the problem of sharing user-level sockets which most
other “fast sockets” systems do not address at all.

On calling exec, a process replaces its current memory image by that
of a specified program. Without any modifications, this step would discard
the SCI socket resources of the original process. An SSLib therefore has to
make sure that its SCI sockets can be restored after an exec call. To that
end, it intercepts the exec call and forwards all SCI sockets information to
the SSD before calling the OS-level exec. Every program linked to the SSLib
first registers with the local SSD. When such a program is executed after an
exec, the SSD detects that it has already a process registered with the same
process ID. It hands over any information on SCI sockets that it received
from the old process. The new application can then restore the SCI sockets
opened by the original process.

11.2.6 Other Calls Intercepted and Handled by the SSLib

A program can do I/O directly via system calls or via the buffering routines
supplied with the C stdio runtime library. In addition to specific socket calls
like connect or accept, the low-level I/O routines like read, write, and
ioctl have to be supported by the SSLib. Furthermore, the C runtime I/O
routines and macros, e.g., printf, fgetc, or putc, must be intercepted and
handled by the SSLib. The reason is that some applications, e.g., the ftpd,
make use of these routines for communication over sockets. Intercepting the
latter calls incurs significant overhead for regular programs even if they do
not use SCI sockets. Therefore, this feature is provided as an option only.

11.2.7 Out-of-Band Data

Regular TCP supports out-of-band (OOB) data. The SCI Sockets software
does so as well, by providing a separate ring buffer at each communication
endpoint for the OOB data. Thus, OOB data can be sent even if the regular
communication buffer is full. On the arrival of OOB data, the receiving pro-
cess is notified by a signal (if requested). Similar to TCP, a hint is sent in the
regular data stream to indicate the presence of OOB data. OOB data can
be read inline; hints to already read OOB data are skipped. The presence of
OOB data is a condition which can be waited on in select.

11.3 Implementation Aspects

11.3.1 Communication Among Components

Communication among SSDs on different nodes utilizes special DSM seg-
ments (with well-known segment numbers) that the SSDs export and mu-
tually map during startup. Each SSD has its own slot in the segment of the

11. SCI Sockets Library 219

other SSDs so that the SSDs can initially contact each other concurrently. An
SSD’s slot address (offset) is specified by the SCI ID of the adapter card of
the node hosting the SSD. For the rest of the communication among SSDs,
e.g., for connection setup, DSMS regions to be used are negotiated. This
data structure and procedure obviates the need to resort to standard TCP-
or UDP-based communication for SCI connection setup.

Communication among SSLibs and their local SSDs utilizes two forms of
interprocess communication (IPC). Regular communication, which involves
non-time critical messages only, is based on Unix System V Message Queues.
These ensure that all messages are synchronized by the OS kernel. If however
some amount of data has to be shared, Unix System V Shared Memory is
used. This is, for instance, employed by an SSLib to report the conditions it
wants to be signaled upon (e.g., in a select) to the local SSD, and by the
SSD to deliver these conditions to an SSLib.

Finally, as already mentioned, Unix-style signals are used to notify other
SCI Sockets software components of important events. For example, the SSD
raises a signal on successful establishment of a connection, provided the user
application is in a select call, or if UDP data is received and an application
waits on data on a specified port.

11.3.2 SSLib Layers

As indicated earlier, the SCI Sockets Library is divided into two layers se-
parated by an interface called SCI Sockets Low-Level API (SSLLAPI). The
upper layer comprises the high-level functions of the SSLib, like support
of the sockets API, communication via DSM segments as described above,
and communication between SSLib and SSD. The bottom layer isolates this
functionality from the specific hardware and OS platform, e.g., the DSM im-
plementation and SCI hardware and device driver details, making the library
portable to a large extent.

The functionality and mechanisms supported by the bottom SSLib layer
can be divided into four groups:

– Basic SCI DSM management mechanisms. These functions provide for
creating, exporting, importing, mapping, unmapping, and destroying of
shared memory segments required for data transfers. It must be noted that
the upper layer need not be concerned about the type of shared memory
being used. In the regular case, the shared memory will be comprised of
SCI DSM segments, but it may also be a mapped, shared file or local sha-
red memory. Using the latter implementations, the SSLib could be readily
tested and debugged on a single node and a shared-memory multiprocessor,
respectively.

– Control transfers. In addition to data transfers, control transfer is required
in a communication library like the SSLib. For this purpose, the bottom

220 H. Hellwagner, J. Weidendorfer

SSLib layer supports a “notifying” write which notifies a process of a mo-
dification to a DSM location. Such writes are used, for instance, to update
RRB start and end pointers. The SSLLAPI functionality for control trans-
fers comprises:
– a function actually performing a notifying write operation;
– a function allowing to wait for, and synchronously react on, a modifica-

tion to one of the specified DSM locations, until a timeout expires;
– registration of a call-back function that is to be asynchronously invoked

on a notifying write to a specified DSM address;
– temporary disallowing and postponing of call-backs in case a process

executes a critical region, for instance.
– Memory barriers. A serious drawback of SCI is that it does not guarantee

in-order delivery of transactions. Thus, it would, e.g., be possible for data
written into an RRB to arrive after the corresponding RRB end pointer
update becomes effective, potentially leading to erroneous data being read
at the receiving end of the connection. The solution implemented in the
lower SSLib layer is that notifying writes guarantee memory ordering as
well. That is, a notifying write ensures that all outstanding data transfers
(writes) have completed before it is being performed. This is accomplished
by means of the store barriers supplied by recent versions of the Dolphin
SCI adapters, or simply by using remote DSM read operations.

– Management of DMA-based channels over SCI. Most Dolphin SCI adapter
cards offer two mechanisms for data transfers over SCI: (1) the processor
actively copying data via DSM segments, as introduced above, and (2)
“background” DMA transfers, involving the processor only in the start-up
phase. For the latter data transfer mechanism, a group of functions in the
SSLLAPI supports opening and closing unidirectional read or write DMA
channels between the communication partners; DMA transfers offered by
the SCI device driver can then be used.

11.3.3 Choice of Most Efficient Communication Mechanism

Since the DMA-based data transfers require device driver (OS) intervention
to trigger the DMA engines on the SCI adapters, they entail context switch
overhead and increased latency. Thus, DMA is most useful for moving large
amounts of data, which amortizes start-up costs and relieves the processor
from the time-consuming copying task. The SSLib transparently selects the
most efficient communication mechanism for a given data transfer, depen-
ding on the data volume to be sent. The threshold that switches between
the transfer options, e.g., 4 kByte size, can be compiled in or specified as a
runtime parameter by the user.

Unfortunately, some versions of the Dolphin SCI cards show poor perfor-
mance on DMA transfers; achievable peak bandwidth is lower than using the
copy mechanism. In these cases, the SSLib defaults to copying as a result of
a high threshold value.

11. SCI Sockets Library 221

11.3.4 SSLib Implementations

The SCI Sockets software was initially developed on Solaris platforms (SPARC-
stations-2 and UltraSPARCs with Dolphin SBus-1 and SBus-2 SCI adapter
cards, respectively) and later ported to Linux systems (Pentium II-based
PCs with Dolphin’s SCI-PCI adapters, Rev. B) as well as to Siemens Nixdorf
RM x00 workstations with the Reliant Unix OS and SCI-PCI cards as well.
Porting did not pose problems.

For testing purposes, the initial versions were restricted to run on a single
node, employing shared, mapped files for shared memory and the kill system
call to implement control transfer: a Unix signal is asynchronously delivered
to the receiving process as a result of a notifying write, or can be synchro-
nously waited upon. The SSLib implementation on Solaris was then changed
to utilize an extra thread to poll for notifying writes, as explained below.
Further, real SCI DSM segments were supported, and this cluster imple-
mentation was ported to Linux and the Dolphin SCI-PCI adapters. Finally,
support for the remote interrupts supplied by these SCI cards was added.

11.3.5 Control Transfers

A crucial issue in user-level communication systems is the implementation of
control transfers, most importantly notifying the receiver of incoming messa-
ges. Two models exist: interrupt-driven and polling-based message handling.
Because of its importance, we describe and justify the control transfer ap-
proach in the SCI Sockets software, which is mainly based on polling.

For the first implementations of the SSLib, there was no support for a
remote interrupt-driven notification mechanism. Thus, polling of specified
DSM locations was used, to detect modifications when needed. On Solaris,
for example, an extra kernel thread is created by the bottom layer of the SS-
Lib, responsible for polling the DSM locations which are subject to notifying
writes. The two cases of control transfer are handled as follows.

In the first case, i.e., if call-back handlers are registered and the user
application does some computation or blocks in a system call, the application
has to be interrupted. The extra thread actively polls the DSM locations for
which call-back handlers are registered. On a modification, this thread sends
a signal to the main application thread. In this manner, system calls like a
select are interrupted. A Unix handler for the signal is called which searches
for the change and transfers control to the according handler function(s).

In the second case, that is, on a call to the wait function supplied by
the SSLLAPI, the main thread suspends the polling thread and itself polls
the addresses specified in the wait function. On a change, the corresponding
handler is called or the function returns, starting the polling thread again.

Thus, the second thread is active only if there are handlers registered and
the wait function has not been invoked. In the SSLib, this happens mainly
when asynchronous I/O is switched on for an SCI socket, or when the main

222 H. Hellwagner, J. Weidendorfer

application thread is blocked in a select, which had to call the OS-level
select and is simultaneously waiting for a condition on an SCI socket.

In the first case, latency is far from good. The scheme is supplied for
asynchronous notifications, for which latency is in many situations not of
primary importance: the application is busy doing some work anyway, over-
lapping computation and communication. The second one is the case where
low latency is important, i.e., when the application is blocked waiting for
communication. The polling approach provides low latencies in this case.

A recent investigation [7] quantified the performance of handling messages
via interrupts and polling, concluding that a hybrid system achieves robust
performance in most of the situations. It relies on polling during application
idle times and uses interrupts otherwise. Since recent Dolphin SCI adapters
provide support for raising remote interrupts, such a hybrid scheme for the
SSLib became possible in principle. Our experiences with remote interrupts
over SCI are, however, that their latencies are too high (some 100 μs) to
render them feasible as the sole notification method, and that enabling and
disabling interrupts from user level on the receiver side is too difficult to
flexibly switch between the two mechanisms in a hybrid system.

11.4 Functional Tests and Performance

Common Unix tools that regularly use standard BSD sockets, e.g., ftp, ftpd,
and inetd, have been used to test the correct behavior of SSLib. The pro-
grams run well and deliver good performance. For example, with large files
ftp achieves nearly the throughput of the micro-benchmarks shown below.
The inetd daemon, the standard “superserver” for Unix systems, in con-
junction with the ftpd served to test the concepts developed for fork and
exec support. Depending on a configuration file, inetd listens on specified
network ports and starts programs on incoming connections.

Initial performance tests were conducted on an SCI cluster of eight Ultra-
SPARC workstations at the University of California, Santa Barbara (UCSB).
The cluster nodes are equipped with 143 MHz Ultra-1 and 167 MHz Ultra-2
processors, respectively, and Dolphin SBus-2 SCI adapters. The peak band-
width for the raw communication primitives is reported as 30.4 MByte/s for
64-byte block stores (supported by the UltraSPARC VIS instruction set) and
25.5 MByte/s for DMA-based communication; minimum round-trip latencies
are 8 μs for writes (two writes constitute the round trip) and 6 μs for reads
(which is inherently a round-trip communication) [6].

Simple micro-benchmarks were used to assess throughput and round-trip
latencies of the SCI Sockets software on this cluster. The results are shown in
Figures 11.5 and 11.6. The performance figures are encouraging: maximum
throughput of 25 MByte/s and round-trip latencies of about 17 μs for 1-byte
packets. Note that this latency figure adds just a factor of about two to the

11. SCI Sockets Library 223

raw round-trip times, and outperforms almost all of the other “fast sockets”
packages referred to in Section 11.5.

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000 14000

T
hr

ou
gh

pu
t [

K
B

yt
e/

s]

Data transfer size [Bytes]

Maximum
Average

Fig. 11.5. SCI Sockets throughput on the UCSB SCI cluster

The sawtooth shape of the latency curve stems from the use of the memcpy
function in the sender’s SSLib to move data into the RRB. On the UltraS-
PARC processor, VIS block store instructions are transparently utilized by
memcpy whenever possible. Note that this latency curve suggests that, for
small amounts of data, local memory copy performance to a large extent
determines the data transfer performance over the SCI interconnect.

The micro-benchmarks were also run on a Linux platform, comprising PC
nodes with a 233 MHz Pentium II processor each, a 33 MHz, 32-bit PCI bus,
440 FX chip-set, and the Dolphin SCI-PCI adapters, revision B. Maximum
throughput of 37 MByte/s and minimum round-trip times of about 25 μs
have been achieved [4].

To assess the performance of TCP/IP protocol implementations, higher-
level benchmarks are available as well. The SSLib library was tested with
the wide-spread ttcp and netperf benchmarks. The ttcp program on the
UCSB SCI cluster reports maximum throughput of 25 MByte/s, and a half-
performance length of 1500 bytes (the size of the data transfer resulting in
half of the maximum throughput). This value is higher than that of other
“fast sockets” systems (typically, 500–600 bytes), reflecting the fact that ttcp
captures the connection establishment costs as well. Connection setup is more
expensive in the SCI Sockets software than in the other systems, since our
system refrains from falling back to a standard Ethernet connection, as most
other systems do.

224 H. Hellwagner, J. Weidendorfer

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900

R
ou

nd
tr

ip
 la

te
nc

y
[u

s]

Data transfer size [Bytes]

Minimum
Average

Fig. 11.6. SCI Sockets round-trip latencies on the UCSB SCI cluster

11.5 Related Work

Several user-level communication systems have been developed that support
a sockets API as well.

U-Net [18] was the first communication architecture to allow protected,
user-level access to the network interface on off-the-shelf hardware (SPAR-
Cstations with Fore Systems ATM adapters) running a standard operating
system (SunOS). U-Net pioneered many of the ideas and concepts to be incor-
porated into the VI Architecture specification [3] recently. The ATM adapter
firmware was modified to implement the virtualization of the network inter-
face so that multiple user processes can communicate with the adapter con-
currently. This base-level functionality was used to re-implement many TCP
and UDP modules in user space, removing many of the restrictions of an OS-
level implementation, e.g., redundant copy operations and complex network
buffer handling. In addition, the migration to user level made the protocols
more flexible for tuning to high-speed networks and adapting themselves to
the state of the communication system. In contrast to the SSLib software,
the base TCP and UDP protocols have not been eliminated, though.

Several user-level “fast sockets” implementations have been developed for
Myrinet-based clusters [12][11][19]. All three sockets APIs have in common
that they discard the standard TCP/IP protocol stack and rely on lower-level
communication libraries specifically optimized for Myrinet communication.

For instance, Berkeley Fast Sockets [12] are built upon Active Messa-
ges, a reliable low-overhead transport and notification mechanism, yet not
guaranteeing in-order delivery. Berkeley Fast Sockets optimize for local-area
transport by omitting features of TCP/IP unnecessary in that environment.
It collapses layers of the sockets API and the protocols, simplifies buffer ma-

11. SCI Sockets Library 225

nagement, and avoids copy operations whenever possible. Receive posting
(see Section 11.2) is introduced as a means to avoid a copy through the re-
ceive socket buffer when the final destination of the data is already known
upon packet arrival (through a recv). In contrast to SSLib, the Berkeley Fast
Sockets can revert to standard protocols for non-local communication. They
have several limitations, however, including lack of support for fork (i.e.,
sharing of connections), exec, select, and asynchronous I/O; connection
establishment must rely upon a standard TCP/IP connection. Round-trip
latencies are about 61 μs on a cluster of UltraSPARC-1 nodes connected via
Myrinet, and a maximum throughput of about 33 MByte/s is achieved.

The sockets implementation based upon Illinois Fast Messages [11] and
the ParaStation-2 sockets [19], which are based upon the so-called ports ab-
straction, share part of the concepts and limitations of Berkeley Fast Sockets
(details are not available in the papers), with ParaStation-2 outperforming
the other implementations.

SHRIMP [1] introduced the concept of Virtual Memory Mapped Commu-
nication (VMMC) which is similar to SCI DSM in that it allows applications
to transfer data directly between two virtual memory address spaces over
the network. Based on import-export mappings similar to SCI, two trans-
fer strategies are supported: deliberate update, which is an explicit transfer
(send) of data, and automatic update, which reflects operations on expor-
ted local memory segments in the remote memory (by hardware means). In
contrast to SCI, in-order delivery of all data transfers is guaranteed and a
notification mechanism is available that transfers control to a user-specified,
user-level handler function after a message transfer. SHRIMP implements
stream sockets only, i.e., TCP semantics. The implementation lives in user
space and is based on moving data into mutually mapped RRBs, similar
to the SSLib. Variants with one and two copy operations are available; the
automatic-update version, which is almost identical to the SSLib data trans-
fer, always does two copy operations in order not to violate the sockets se-
mantics (“receive posting” is not specifically supported). Since many of the
concepts are very similar to the SSLib, it is not surprising that the minimum
latency is very low as well: 22 μs for a round trip. Maximum throughput is
close to the raw hardware one-copy limit of about 13.5 MByte/s, over the
proprietary backplane interconnect based on the Intel Mesh Routing Chip.
As compared to the SCI Sockets software, the SHRIMP stream sockets libr-
ary has some severe restrictions: no support for datagram sockets, no support
for fork and exec calls (select is supported, though), and the need to fall
back to regular TCP sockets for connection setup and tear-down. SHRIMP
sockets were later ported to Myrinet [2].

To our knowledge, the first implementation of sockets over a VI Archi-
tecture-based network is described in [15]. This stream sockets software is
based on a TCP stack migrated to user level and tailored to the VI-specific
abstractions and mechanisms, with TCP features omitted where not needed.

226 H. Hellwagner, J. Weidendorfer

For example, since the underlying network supports reliable delivery (in VI
Architecture terminology), fragmentation and re-assembly of long messages
can be greatly simplified in that, e.g., sequence numbers, timeouts, duplicate
detection, acknowledgments, and retransmissions need not be incorporated.
The system is implemented on the GigaNet cLAN GNN1000 interconnect
(1.25 GBit/s one-way bandwidth) which has VI functionality implemented
in hardware on the network adapter. The main contributions of this work are
a credit-based flow control mechanism, user-level TCP protocol processing
adapted to the VI Architecture concepts, caching of communication buffers,
and reduced CPU processing overhead for communication as compared to
legacy TCP implementations. Round-trip latencies of the VI stream sockets
system are about 75 μs minimum (on 400 MHz Intel Pentium II Xeon-based
servers), 2 to 3 times better than legacy protocols; maximum throughput is
about 87 MByte/s, a factor of 3 to 4 improvement. The paper does not report
about the difficult functional features of a user-level sockets implementation,
like connection setup, fork, exec, or select support, or OOB data.

A user-level socket implementation for SCI, called SCILAN, is described
in [13] and [14], for a Windows NT cluster with 200 MHz Pentium nodes
and Dolphin PCI-SCI adapters, revision B. An interesting feature of SCI-
LAN is that existing networking applications can utilize the socket library
without re-compilation or relinking. This is achieved through a modified run-
time linking step which redirects all socket calls from the regular WinSock
library to the replacement SCILAN library on a process-by-process basis.
SCILAN sockets bypass the OS and communicate directly through SCI DSM
segments (mutually mapped RRBs) in user space, identical to the SSLib.
SCILAN introduces a novel control transfer scheme for SCI networks: inter-
rupt flags realized through special SCI mappings and stimulating writes. The
important thing to note is that a sender always stimulates the interrupt flag
in the receiver whenever it has finished a data transfer. Since the receiver
can disable the interrupt flag, this may or may not result in an interrupt at
the receiving end. A busy receiver will disable interrupts, whereas a recei-
ver going to sleep while waiting for data will enable it. Selective disabling
of interrupts attempts to minimize the number and costs of interrupts. A
flag on the sender side allows to implement a basic flow control mechanism.
SCILAN is based on the WinSock 1.1 specification, which states that socket
descriptors are not valid OS-level file descriptors. This eliminates the need to
intercept system calls and take appropriate actions for the user-level sockets;
details on this issue are not given, though. Furthermore, SCILAN relies on
SCI hardware reliability, but it remains unclear what is being done about
out-of-order delivery. SCILAN achieves minimum latencies of about 16 μs
when polling is used for receiver notification, and of 180 μs when interrupts
are used; maximum throughput is about 21 MByte/s.

Finally, a commercial TCP/IP suite for SPARC-based SCI clusters is
also available [10], through a software layer called the DLPI (data link pro-

11. SCI Sockets Library 227

vider interface). Regular TCP is used, with features omitted when the SCI
hardware or driver provide adequate support, e.g., reliable delivery. Latency
on UltraSPARC-2s with Dolphin SBus-2 SCI adapters is 199 μs, with room
for optimizations pointed out by the authors; peak throughput is about 29
MByte/s.

11.6 Conclusions

This paper described the SCI Sockets Library, a user-level implementation of
the legacy BSD sockets API widely used for distributed and parallel compu-
ting, for SCI-based clusters of workstations or PCs. The basic features and
design issues of the system were introduced. SCI Sockets provide the fun-
ctionality of standard, OS-level sockets as completely as possible, allowing
legacy networking applications to be migrated to SCI clusters by simple re-
compilation.

The challenges that had to be overcome to achieve this include: connec-
tion establishment and shutdown at user level; interception of system calls
pertaining directly or indirectly to sockets (with fork, exec, and select
being the most difficult cases); sharing of, and synchronizing concurrent ac-
cesses to, connections at user level; support for datagram sockets; providing
the out-of-band data path; and supporting the C stdio library as well as
asynchronous I/O. Due to these features as well as its excellent performance,
e.g., 17 μs minimum round-trip latencies, the SCI Sockets Library compa-
res favorably to other “fast sockets” implementations over cluster networks
reported in the literature.

Current restrictions of SCI Sockets are that it limits communication to
the SCI cluster, i.e., it does not fall back to standard OS sockets for com-
munication to non-SCI nodes; high memory consumption due to potentially
large buffers locked down in memory at the receiving ends of open connec-
tions; and the predominant use of polling to realize receiver notification, in
spite of situations where interrupts would be advantageous [7]. Concepts and
prototypes exist to overcome these limitations in our future work, e.g., a
DSM segments manager maintaining large DSM areas, portions of which are
allocated to SSLib instances on demand.

Acknowledgments

The support from Klaus E. Schauser and his research group at the University
of California at Santa Barbara, for providing access to their UltraSPARC SCI
cluster, is gratefully acknowledged.

228 H. Hellwagner, J. Weidendorfer

References

1. S. N. Damianakis, C. Dubnicki, E. W. Felten. Stream Sockets on SHRIMP.
Proc. CANPC’97 (First Int’l. Workshop on Communication and Architectural
Support for Network-based Parallel Computing), LNCS 1199, Springer Verlag
1997.

2. C. Dubnicki, A. Bilas, Y. Chen, S. N. Damianakis, K. Li. SHRIMP Project
Update: Myrinet Communication. IEEE Micro, Jan./Feb. 1998, pages 50–51.

3. D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M.
Merritt, E. Gronke, C. Dodd. The Virtual Interface Architecture. IEEE Micro,
March/April 1998, pages 66–76.

4. M. Eberl, H. Hellwagner, W. Karl, M. Leberecht, J. Weidendorfer. Fast Commu-
nication Libraries on an SCI Cluster. Proc. SCI Europe ’98, ISBN 1-901864-02-2,
Cheshire Henbury 1998.

5. R. Gillett, R. Kaufmann. Using the Memory Channel Network. IEEE Micro,
Jan./Feb. 1997, pages 19–25.

6. M. Ibel, K. E. Schauser, C. J. Scheiman, M. Weis. High-Performance Cluster
Computing Using SCI. Proc. Hot Interconnects V, Stanford Univ., Palo Alto,
CA, USA, Aug. 1997.

7. K. Langendoen, J. Romein, R. Bhoedjang, H. Bal. Integrating Polling, Inter-
rupts, and Thread Management. Proc. Frontiers’96: 6th Symp. on Frontiers of
Massively Parallel Computation. IEEE Computer Society Press 1996.

8. J. V. Lawton, J. J. Brosnan, M. P. Doyle, S. D. O Riordain, T. G. Reddin.
Building a High-performance Message-passing System for MEMORY CHAN-
NEL Clusters. Digital Technical Journal, Vol. 8, No. 2, 1996, pages 96–116.

9. S. J. Leffler, M. K. McKusick, M. J. Karels, J. S. Quarterman. The Design and
Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley 1989.

10. K. Omang, B. Parady. Performance of Low-Cost UltraSPARC Multiprocessors
Connected by SCI. Proc. CNDS’97 (Conf. on Communication Networks and
Distributed Systems Modeling and Simulation). Society for Computer Simula-
tion 1997.

11. S. Pakin, V. Karamcheti, A. Chien. Fast Messages: Efficient, Portable Commu-
nication for Workstation Clusters and MPPs. IEEE Concurrency, April-June
1997, pages 60–73.

12. S. H. Rodrigues, T. E. Anderson, D. E. Culler. High-Performance Local Area
Communication With Fast Sockets. Proc. USENIX Symposium 1997.

13. S. J. Ryan, H. Bryhni. SCI for Local Area Networks Research Report 256,
Department of Informatics, University of Oslo, Jan. 1998.

14. S. J. Ryan, H. Bryhni. Eliminating the Protocol Stack for Socket Based Com-
munication in Shared Memory Interconnects. Workshop PC-NOW’98 (First
Int’l. Workshop on Personal Computer-based Networks of Workstations), held
in conjunction with IPPS/SPDP’98, March 30 - April 3, 1998, Orlando, Florida,
USA.

15. H. V. Shah, C. Pu, R. S. Madukkarumukumana. High Performance Sockets and
RPC over Virtual Interface (VI) Architecture. Proc. CANPC’99 (Third Int’l.
Workshop on Communication and Architectural Support for Network-Based
Parallel Computing), LNCS 1602, Springer Verlag 1999.

16. T. von Eicken, D. E. Culler, S. C. Goldstein, K. E. Schauser. Active Messages:
a Mechanism for Integrated Communication and Computation. Proc. 19th Int’l.
Symp. on Computer Architecture. ACM Press 1992.

17. T. von Eicken, A. Basu, V. Buch. Low-Latency Communication Over ATM
Networks Using Active Messages. IEEE Micro, Feb. 1995, pages 46–53.

11. SCI Sockets Library 229

18. T. von Eicken, A. Basu, V. Buch, W. Vogels. U-Net: A User-Level Network
Interface for Parallel and Distributed Computing. Proc. 15th ACM Symposium
on Operating System Principles. ACM Press 1995.

19. T. M. Warschko, J. M. Blum, W. F. Tichy. A Reliable Transmission Proto-
col for Myrinet. Second Workshop on Cluster Computing, March 25-26, 1999,
Karlsruhe, Germany.

20. J. Weidendorfer. Entwurf und Implementierung einer Socket-Bibliothek für ein
SCI-Netzwerk. Diploma Thesis, Institut für Informatik, Technische Universität
München, Feb. 1997.

12. TCP/IP over SCI under Linux

Hüseyin Taskin, Roger Butenuth

Operating Systems and Distributed Systems Research Group,
University of Paderborn, Germany
email: {bond, butenuth}@uni-paderborn.de
http://www.uni-paderborn.de/cs/heiss/

12.1 Introduction

In this chapter, we present how SCI devices can be integrated in the TCP/IP
protocol stack of Linux for high speed communication within a cluster. We
developed a packet driver which is using SCI at the physical layer to ena-
ble a data transfer with high throughput and low latency. In our solution
we achieved a throughput of 31 MByte/s and a latency of 77 μs. Although
the size of the protocol stack implies higher software latency than hardware
latency, we can benefit from the higher bandwidth compared to traditional
network technologies. This makes it conceivable to replace an existing Ether-
net network by our approach in SCI clusters. Instead of replacing TCP by a
user level transport protocol as done by [2] and [3] (see also Chapter 11), our
solution is to implement SCIP (Scalable Coherent Interface IP) as a packet
driver, sending and receiving IP packets. This is more straightforward since
SCIP, like e.g. PLIP, SLIP or Ethernet, works underneath the IP layer (see
also Figure 12.1). The key advantage is that we keep the socket semantics
and therefore all applications work without any modifications or recompila-
tions. In addition, we can realize this with a small amount of source code,
due to the fact that we only have to transmit an IP packet through the SCI
interconnect. So SCIP is a thin layer between IP and the SCI driver interface.
Another important fact is that SCIP runs without any problems on multi-
processor machines since the Linux kernel provides coordinated access to the
driver.

........
........................

.............................

..........
.........
..........
..........
..........
..........
...........
..........
...............
......................
......................
.............................

......................

...............
........
......

........
.......
..
........
......

.......... ARP

.
PLIP SLIP Ethernet

INET - Socket

BSD - Socket

UDPTCP

IP

SCIP

Fig. 12.1. Linux networking layers

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 231-237, 1999
© Springer-Verlag Berlin Heidelberg 1999

232 H. Taskin, R. Butenuth

The chapter is organized as follows. An overview of the SCIP structure and
implementation is given in Section 2. Section 3 presents some measurements
of SCIP which are compared to those of other implementations. We conclude
the chapter with summarizing remarks in Section 4.

12.2 SCIP Structure

12.2.1 Packet Driver Interface

Although Linux has a monolithic kernel it allows to dynamically link compo-
nents of the operating system, called modules, without building a new kernel.
The SCI device driver and the SCIP packet driver are realized as modules
and can be loaded and unloaded as they are needed. There is a clear separa-
tion between the TCP protocol and the packet driver which makes it possible
to hide the physical transmission from the protocol and protocol details are
hidden from the packet driver. In the following we refer to a packet interface
as an interface at the OSI level 2 which provides at least the following device
methods:

– open and close methods for the interface,
– a method for the transmission of a packet,
– packet header manipulation methods,
– a method to get statistics about the interface.

In our case we need two further optional methods. One to perform
interface-specific ioctl commands and a method to change the maximum
transfer unit (MTU). The packet reception is interrupt-driven. The inter-
face interrupts the processor to signal that a new packet has arrived and the
packet must be handed over to the upper layers.

12.2.2 Hardware Address Resolution

After loading the SCIP module, we redirect the route of IP packets to use
SCIP as a packet device to reach IP hosts within the SCI cluster. The follo-
wing usual network configuration commands can be used:

– ifconfig scip sourcehost
– route add -host desthost scip

In order to attain a higher efficiency, we use a separate IP address trans-
lation within the cluster. The Address Resolution Protocol (ARP) commonly
used by Ethernet is not usable because it needs broadcast functionality.

Our IP address translation associates IP numbers with SCI node-IDs.
The table with the required data is loaded on every host in the SCI cluster
by invoking the ioctl interface method. This is the only special program

12. TCP/IP over SCI under Linux 233

�
�
�

�
�
�

�
�
��

�
�

IP number

XOR
�������

�

� next
SCI id

remote node
struct

Hash table

Fig. 12.2. SCIP address translation with hash table

we need to configure SCIP. The table is organized as a hash table (see also
Figure 12.2). The hash function computes the XOR operation over the 4
bytes of the IP number and determines the key for the hash table entry. We
assume that a usual SCI cluster has fewer than 256 nodes which corresponds
to the hash table size. This simple hash function is optimal (no collisions)
when all nodes are located in the same subnet with an 8-bit netmask. In case
of a collision the item will be entered in a linear list (see also Figure 12.2)

12.2.3 Other Implementation Issues

Each node in the SCI interconnect provides the following resources:

– a shared memory receive buffer,
– a buffer index (next write position),
– and an interrupt flag.

The buffer is managed as a ring buffer. If a remote host reads the buffer
index through the fetch and increment mapping, the buffer index will be
atomically incremented. The actual index of the buffer slot where the packet
will be written is the buffer index modulo the number of buffer slots. The
number of buffer slots has to be a power of 2 because the fetch and increment
counter wraps around after 232 operations. The required number of buffer
slots has been determined experimentally and an overflow of the ring buffer
is extremely unlikely for two reasons. Firstly, it can be expected that the
CPU copies packets faster from the local buffer than a remote sender can
deposit them there. Secondly, the flow control of TCP prevents an unbound
number of packets to be sent. As a result, the receiver can allow several nodes
to write at the same time to the receive buffer. Instead of providing buffers
for each node, we can handle this with only one ring buffer.

The size of a buffer slot corresponds to the maximum transfer unit (MTU).
In our case, we chose the Ethernet MTU sizes of 1500 bytes and 15000 bytes
respectively, but of course SCIP can be configured for any MTU size. The
interrupt flag is a 32-bit word in the local memory. Write requests of the

234 H. Taskin, R. Butenuth

Memory
(user space)

Memory
(user space)

(kernel space)

IP Buffer
	

(kernel space)

IP Buffer

�

mapped as
prefetch

� �

..

..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

..

...

...

...

�..

(local memory)

Ring buffer

IRQ Flag

Buffer Index
mapped as

fetch&increment

Receiver
(remote memory)
Transmitter

Fig. 12.3. Internal shared memory structure of two connected machines

transmitter nodes to the flag will be translated to interrupting write requests
through the special mapping. It is possible to allow a number of write requests
before triggering an interrupt. For this reason, the interrupt flag has to be
set with an initial value and reset after each interrupt. SCIP interrupts the
receiver each time it sends a packet to the receiver, i.e. the flag is set so that
each write to the flag will trigger an interrupt. For the first transmission,
the transmitter must map the physical memory of the receiver. After that, it
reads the buffer index, writes remotely to the corresponding buffer slot and
triggers the interrupt of the receiver to indicate that a new packet has arrived.
On the other side, the receiver node is interrupted, copies the new entry from
the buffer and hands it on to the upper IP layer (see also Figure 12.3).

12.3 Performance

12.3.1 Configuration

Performance measurements have been made with two different configurati-
ons. One consisted of two PentiumPro 200 MHz systems with Intel 440FX
chip-set and 66 MHz mainbus frequency; the other of two Pentium II 400
MHz systems with Intel 440BX chip-set and 100 MHz mainbus frequency,
additionally equipped with fast SDRAM. Both systems were equipped with
a Dolphin PCI/SCI adapter using the LC-2 chip and PSB Revision C. Linux
(Kernel 2.0.32) and Solaris were used as operating systems.

12.3.2 Latency

The latency measurements shown in Table 12.1 were made on the Pentium II
system. Since both SCIP and Fast Ethernet have to move the data through
the same protocol stack, there is no advantage of SCIP using SCI at the
physical layer. Thus the throughput for small messages is almost equal for

12. TCP/IP over SCI under Linux 235

Fig. 12.4. Throughput on the PentiumPro system (440FX chip-set)

both technologies. The difference of about a factor of two between the latency
figures of Fast Ethernet running under Linux and Solaris is obviously caused
by the different implementations of the TCP/IP protocol. To compare our
approach with the solution of [2] we made latency measurements on a Pentium
166 MHz system. The SCILAN interrupt approach of [2] has a latency of
180 μs running on the Windows NT 4.0 operating system. SCIP running on
Linux has a latency of 165 μs.

Technology Latency [μs]
SCIP (Linux) 77
Fast Ethernet (Linux) 73
Fast Ethernet (Solaris) 149

Table 12.1. Latency on the Pentium II system (440BX chip-set)

12.3.3 Throughput

Figures 12.4 and 12.5 show the throughput results for both configurations.
The throughput of the Pentium II system is much higher than that of the
PentiumPro caused by the higher memory bandwidth of the former, which
allows faster local memory-to-memory copy operations. SCIP throughput
outperforms Fast Ethernet when transmitting large messages in particular
when an MTU size of 15000 bytes is used. The maximum throughput for the
Pentium II is 31 MByte/s and 20 MByte/s on the PentiumPro, respectively.
The performance drop for certain message sizes in Figure 12.4 is caused by
a small bug in the TCP implementation of Linux [4]. For the Pentium II

236 H. Taskin, R. Butenuth

Fig. 12.5. Throughput on the Pentium II system (440BX chip-set)

Fig. 12.6. Throughput for small messages on the Pentium II system (440BX chip-
set)

system, a patch could be applied and the performance shown in Figure 12.5
could be obtained. Figure 12.6 shows the throughput for small messages from
1 to 512 bytes for SCIP under Linux and Fast Ethernet running under Linux
and Solaris. Especially for small messages, there is a significant difference
between Fast Ethernet under Linux and Fast Ethernet under Solaris. The
smaller latency of Linux results in a better throughput for small packets. For
this reason we do not expect good performance of an SCIP implementation
under Solaris.

12. TCP/IP over SCI under Linux 237

12.4 Conclusion

We have shown that using SCI at the lowest layer in the protocol stack works
well and has the advantage that all existing applications work without any
modifications. It is conceivable to use SCIP as a substitute for the existing
Ethernet network in SCI clusters. Another important fact is that, although
SCI does not provide a guarantee for correct delivery of programmed I/O
operations, we can ensure that in our solution TCP/IP will correct these
errors. This makes it possible to use the simple ring buffer without flow
control.

References

1. A. Rubini. Linux Device Drivers. O’Reilly and Associates, 1998.
2. S.J. Ryan, H. Bryhni. SCI for Local Area Networks. University of Oslo, Research

Report no. 256, January 1998.
3. J. Weidendorfer. Entwurf und Implementierung einer Socket-Bibliothek für ein

SCI-Netzwerk. Diploma Thesis, Technische Universität München, 1997.
4. L. Prylli, B. Tourancheau. BIP: a new protocol designed for high performance

networking on Myrinet. In: Workshop PC-NOW at IPPS/SPDP98, Orlando,
USA, 1998.

13. PVM for SCI Clusters

Markus Fischer1, Alexander Reinefeld2

1 Universität Mannheim, Germany
email: mfischer@mufasa.informatik.uni-mannheim.de

2 Konrad-Zuse-Zentrum für Informationstechnik, Takustr. 7, D-14195 Berlin
email: ar@zib.de
http://www.zib.de/

13.1 Overview

PVM-SCI is a complete implementation of the PVM (parallel virtual ma-
chine) message-passing environment for SCI clusters. It provides two comple-
mentary communication mechanisms: the conventional TCP and UDP pro-
tocols that are also used by the standard PVM for sending messages from
one task to another via the PVM daemons, and a special-purpose protocol
that utilizes the fast SCI network when the PvmRouteDirect option is set. In
the latter case, no time-consuming software protocol is used, resulting in a
significantly reduced communication latency and improved data throughput.

With our work on PVM-SCI, we aimed at both, providing maximum com-
munication performance over SCI and supporting transparent downgrading
to other communication media (e.g. Ethernet, ATM) when SCI is not avai-
lable. Hence, we have implemented PVM-SCI as a heterogeneous message-
passing library that supports several interconnects and system environments.

PVM-SCI is fully compliant with the latest PVM release 3.4 It runs on
Solaris, Linux and Windows NT.

13.2 Parallel Virtual Machine

The Parallel Virtual Machine (PVM) [4] is one of the most prominent pro-
gramming environments for networked computers. Applications can be writ-
ten in Fortran or C and parallelized by using PVM message-passing con-
structs that are mapped onto the underlying distributed system architecture.
PVM supplies functions to automatically start up tasks on a distributed me-
mory system. An authenticated PVM task can then synchronize and com-
municate with other tasks. This model is transparent to the application and
it even allows the combination of heterogeneous resources to be seen as one
virtual machine from the application’s point of view.

† The work presented in this chapter was done while both authors were at Pader-
born Center for Parallel Computing, http://www.upb.de/pc2

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 239-248, 1999
© Springer-Verlag Berlin Heidelberg 1999

240 M. Fischer, A. Reinefeld

The reasons for the popularity of PVM can be found in its specific fea-
tures: PVM supports a dynamic process model, it provides mechanisms for
fault tolerance, it has a manageable number of message-passing functions, it
is available for a wide variety of computer architectures, and it even runs on
heterogeneous clusters.

Virtual machine and application control is brought to the user level by
means of daemons (pvmds) running on the hosts of the distributed system.
The daemons are responsible for process control and for message routing.

Another important part is the PVM library (libpvm) which performs the
actual message passing on the underlying hardware. For each PVM execu-
tion environment there exists a libpvm. The sending and receiving tasks are
identified by PVM task identifiers (tids).

The standard PVM package supports two routing policies: With the de-
fault routing, a message is sent to the local daemon which forwards it to the
destination daemon that serves its local task. The data transmission to the lo-
cal daemons is done with TCP, whereas the communication between the two
remote daemons is done via a connectionless UDP protocol. This approach
gives the necessary flexibility allow communication with a wide variety of
different systems.

The faster direct routing scheme establishes a direct connection between
the two user tasks without involving the daemons. This is done with the
pvm setopt(PvmRoute,PvmRouteDirect) directive that invokes the PVM li-
brary to set up a direct TCP connection between the two user tasks.

In our PVM-SCI implementation, we have modified the PVM library to
send messages with PvmRouteDirect via the fast shared memory communi-
cation provided by SCI, as presented in Section 13.4.

13.2.1 PVM Implementations

PVM owes much of its popularity to the fact that it runs on a wide spectrum
of target platforms. This includes all major operating systems and a variety of
communication protocols. Its special feature is then to be able to interoperate
between these heterogeneous environments.

Most current LAN or WAN implementations of PVM use the IP stack
and UDP or TCP as their fundamental protocol layer. One such example is
a PVM 3.3 implementation for ATM networks [11] that uses TCP even when
the PvmRouteDirect option is set. On the one hand the use of the full software
protocol stack has the advantage that PVM can be quickly adapted to support
new interconnects, but on the other hand the short software development time
and improved portability is often payed for by a much reduced communication
performance.

For the faster system area networks (SANs) Myrinet [3] and SCI [6], some
recent message-passing implementations try to by-pass the costly system calls
and access the network directly. Research projects on Active Messages and
U-Net [1] showed improved communication performance. The ongoing trend

13. PVM for SCI Clusters 241

since then can be seen to enable user-level communication without involving
the operating system kernel. Following this line, the Virtual Interface (VI)
Architecture [10] has been proposed as a standard. Some hardware vendors
already support VI Architecture, and there also exists a first MPI implemen-
tation [7].

Other related work has been done by developing a PVM-compliant version
running on the ParaStation [2]. Here, the original PVM source code has been
modified thoroughly to achieve maximum communication performance on the
underlying Myrinet. But compared to PVM-SCI, the ParaStation User-Level
Communication (PULC) runs on homogeneous environments only.

With our work on PVM-SCI we aimed at both, to provide maximum com-
munication performance over SCI, and to support transparent downgrading
to other communication media when SCI is not available. In SCI clusters, the
computing nodes are typically interconnected by Ethernet for resource ma-
nagement purposes, while the faster SCI links are used for application level
communication only. We devised PVM-SCI to make use of SCI for communi-
cating within the cluster and to use Ethernet or other suitable communication
media for connecting to nodes outside the SCI cluster.

13.2.2 Models for Zero-Memory-Copy Data Transfer

Traditional networking schemes (for example TCP as a form of network trans-
port layer) move data as streams: the user task moves data from its local
memory into a buffer and calls a library routine to hand the buffer over to
an I/O interface for transporting the data as a byte stream to the commu-
nication network. At the receiving side, the bytes arrive and are filled into a
buffer, the buffer is handed over to the operating system, which, awakened
by an interrupt, provides the data to the user task. After a context switch,
the receiving user task copies the data into its local memory for further pro-
cessing.

While this state of affairs might be tolerable for transferring data over
WANs or LANs, the described scenario is unsatisfactory in SANs. Due to
their faster communication speed, the time used for a context switch or for a
memory transfer is no longer negligible compared to the actual data transfer
time. Here, not only the external communication network may become a
bottleneck, but also the data transfer through the memory bus. On a 200
MHz Intel PentiumPro, for example, a memory read is done at a speed of
about 180 MByte/s, while a memcpy is only half as fast.

Consequently, schemes for zero-memory-copy data transfers have been de-
vised [8, 9], however at the cost of sacrificing some compliance with message-
passing standards. BIP-MPI [8], developed at ENS Lyon, is an adaptation
of MPICH for zero-memory-copy on Myrinet. With 126 MByte/s on large
data blocks, its communication performance almost matches the 133 MByte/s
throughput of the 33 MHz PCI bus.

242 M. Fischer, A. Reinefeld

13.3 SCI Communication Model

SCI supports a shared memory communication model by making a process’
local memory available to other processes via the SCI interface card. From an
application’s point of view, the communication layer is responsible for expor-
ting local memory pages to other participating processes. The driver software
for the SCI adapter card takes care of data retrieval and delivery. Compute
nodes that wish to participate in the sharing of the common address space
must map the memory chunks, thereby implicitly building up a connection.

In SCI such a connection is a mapped memory segment (also called a
window), which has been set up by allocating and exporting memory by one
process and importing it by another. Depending on the mapping type, a
segment can be mapped in either read-only or write-only mode. Since re-
mote writes are much faster than remote reads (approx. 66 MByte/s versus
8 MByte/s), we have implemented PVM-SCI in such a way that data is only
read from local memory segments which are exported with write permissions
to remote processes.

Communication Setup. In the setup phase of an SCI connection, three
basic parameters are used by the Scali SCI driver (9) for allocating, offe-
ring, and mapping memory to enroll into the SCI address space. The first
parameter is a unique HostID, which is obtained by calling SciGetNodeId().
The second parameter is a ModuleID for each task, which should be non-
ambiguous during runtime. Finally, a ChunkID needs to be provided which is
unique within a task assignment. This way, different tasks on one node can
allocate segments without interfering with other allocations.

Having determined these parameters, the memory allocated by Sci-
AllocateLocalChunk() can be offered for remote access by passing the
parameters to SciOffer(). The protection method of the virtual map-
ping must be defined either for exclusive read or write, or for a combi-
nation of both. Other nodes can then connect to the memory by calling
SciConnectToRemoteChunk() with the same parameters.

Thus an exchange of basic information is needed in advance. Since no con-
trol flow is given at the lowest SCI level, the initial information is exchanged
via Fast Ethernet, which is available in most clusters as a basic communica-
tion medium for cluster setup and management.

After having established a connection, the processes are able to transfer
data. The arrival of a new message can be signaled to the communication
partner by an interrupt mechanism consisting of an array of flags which can
be set by remote processes.

The Scali SCI API provides two mechanisms for checking the interrupt
flags, a polling method and a sleeping variant. Alternatively, one can add
additional message control at the application level (without using interrupts)
by adding a counter of the messages sent and received.

13. PVM for SCI Clusters 243

13.4 PVM-SCI

13.4.1 System Architecture

The standard PVM implementation uses connectionless UDP/IP sockets as
the fundamental inter-processor communication scheme. This requires three
communication hops (Figure 13.1): first, a UNIX socket communication bet-
ween the sending task and the local pvmd, then a connectionless UDP/IP
communication between the two pvmds, and finally again a UNIX socket com-
munication to the receiving task. This mechanism works on any combination
of system environments. In homogeneous environments, a direct TCP/IP
route can be set up with the PvmRouteDirect option, which bypasses the
two daemons.

� � � � � � � 	
 � � � � � � � � 	 � �

 � � � � 	
 � � � � � 	 � �

� �
� � � � � � � � � � � � !

� � � � � " � � � � # � $ % � � � � � � � � � � # � �
� � � � � � � � � � # � � � � # � � 	 � � � � �

 � & � � � � � � 	 ' � (�

 � (� (

Fig. 13.1. Protocol for establishing a task-to-task connection with standard PVM

In PVM-SCI the direct routing is further improved by sending data via
the SCI shared memory facilities. For this purpose, PVM-SCI needs to know
how to address the SCI memory that has been exported by the communica-
tion partner. This information is negotiated between the controlling pvmds at
both sides as illustrated in Figure 13.2. In contrast to standard PVM where
a socket provides a bidirectional connection, two separate windows (each of
them allocated by one task) must be created to allow the sending and recei-
ving of messages with the fast remote write and local read functions.

Let’s assume that task A wants to send a message to task B for the first
time with the PvmRouteDirect option set. Task A then allocates, maps, and
offers a local memory chunk identified by a unique NodeId, a ChunkId, and

244 M. Fischer, A. Reinefeld

� � � � � � �) � $ � � * � # � * � � � � �

� � � � � � � 	 � �

 � & � � � � � � � 	 ' � (�

� � + � + � � � � , � # �

 � � � �
 � � � � �

� � � � � � � 	
 �

� � � � � � � � � � � � � � � � �
	 � � � � � � ! �
� � � � + � � �
- � � � * � + � �
� & � � � + � �

� � # � $ % � � � � � � � � * . �
	 � � � � �
 � / �
� � � � + � � �
- � � � * � + � �
� & � � � + � �

� � � � � � �) � $ � �* � # � * � � � � �

Fig. 13.2. PVM-SCI protocol for establishing a task-to-task connection via SCI

a ModuleId. This information is destined for the remote task B. It is sent to
the remote pvmd, which notifies the destination task B when a receive or
send function is being invoked by task B. The three parameters (NodeId,
ChunkId, ModuleId) are used to authenticate a connection with the correct
memory chunk. Authentication is necessary because multiple windows may
be offered by the same task.

Likewise, task B allocates, maps, and offers its local memory chunk to
task A so that, at the end, a symmetrical connection is built up with two
memory chunks at both sides. This allows both tasks to read locally and
write remotely when sending data to each other.

In general, a communication request is granted when (1) the routing po-
licy and implementation allow for a direct SCI connection, (2) the resour-
ces are available, and (3) the protocol versions match each other. If not, a
request-denied reply is returned and the default TCP connection is used
instead.

When the connection has been established, the actual message transfer
is done with the pvm send() command. Task A copies the packed message
buffer into the current write position of its mapped write window, updates

13. PVM for SCI Clusters 245

the number of messages sent to task B, updates its current write position
and triggers the notification flag.

When entering a receiving function, task B detects a message arrival by
querying the interrupter. If no message has arrived yet, it will sleep on the
interrupter until the flag is set. It then reads the header of the incoming
message from its current reading position in its read window to get the size
of the message. When the message has been taken out of the window, the
current reading position is updated. This variable resides in the mapped
memory and is therefore concurrently updated on the remote side. This is
necessary to inhibit future write operations from overwriting unread messages
in the ring buffer.

Note that PVM-SCI does not establish the connections at program star-
tup time, but only after the first send with PvmRouteDirect. Thus, the me-
mory is allocated and mapped just before being used, thereby reducing the
use of resources and speeding up the program startup time on large systems.

13.4.2 Supporting Multiple Interconnects

One advantage of the standard PVM model is often seen in its support of he-
terogeneous computing environments. PVM-SCI even supports heterogeneity
at two levels: the computing nodes and the interconnects. With PVM-SCI
it is possible to run applications in heterogeneous computing environments
with any combination of SANs, LANs, or WANs. The fast SCI interconnect
is used locally while PVM-SCI downgrades to conventional Ethernet or ATM
networks when communicating to the outside world.

The standard PVM uses the select() function to wait for incoming mes-
sages on a set of available connections (typically the TCP connected daemon
and communicating partners). With additional interconnects, PVM-SCI has
to pay attention to multiple interfaces. While a threaded implementation with
multiple threads serving multiple interfaces would have been probably the
most elegant method to implement, we observed poor performance caused by
the additional synchronization steps and context switches. We therefore im-
plemented an active polling method which checks for messages on each avai-
lable interface. To avoid busy waiting, the UNIX system call sched yield()
incrementally increases the relinquishing value before re-entering the loop.

13.4.3 Reducing Memory Copies

In some systems, the bandwidth of the local memory bus may become the
limiting factor when transferring data from memory over a SAN to a desti-
nation processor. To make things worse, the standard PVM software distri-
bution reads the message buffer twice: the first time to obtain the header of
a message with basic information like tags, source, destination, and message
length, and the second time to retrieve the data.

246 M. Fischer, A. Reinefeld

�

�

� �

� �

� �

� �

� �

� �

� � � � � � � � � 	 � � � � � � �
 � �
 � �
 � 	
 � � �
 � � �
 � � �
 �

� � � �
 � � � �
 � � � � � �

�
��
��

��
��

�
�
�
�
��
��
 �

! " � # � $ %
 & � '
 � (�) �

! " � # � $ %
 * � � + � � ,
 � � - � � �
 , � . �

Fig. 13.3. PVM-SCI performance on Linux (100 kByte window size)

PVM-SCI tries to retrieve the message in one step using a one-receive-fits-
all strategy. Instead of reading the header first, then determining the size of
the message body and thereafter retrieving the actual data, our method tries
to read the message in one step. In more detail, the number of bytes read
are the header size plus a constant number of bytes reflecting the assumed
maximum number of bytes in the message which are read out of the mapped
memory and copied into a message buffer. This value is currently set to 200
bytes. When the message body contains less than 200 bytes some bytes at
the end of the allocated buffer have been read in vain. In the other case,
i.e. when there are more than 200 bytes, a second memcpy completes the
receive function. The estimated message length may be set by the application.
Currently we investigate a method for offering an additional pvmsetopt()
option which can be set by the application to a typical message size.

13.4.4 Ring Buffer Management

The SCI API provides basic mechanisms for setting up a connection between
the processes, but it does not support the message handling itself. Speci-
fically, there are no functions for changing the size of previously allocated
memory chunks. We have therefore implemented a ring buffer protocol with
different windows for every send/receive combination. The actual ring buffer
implementation is very similar to the one used in the SSLib project, therefore
we refer the reader to Chapter 11 for a detailed discussion of this topic.

13. PVM for SCI Clusters 247

13.4.5 Performance Results

Figure 13.3 shows the throughput of PVM-SCI for messages sent with the
PvmRouteDirect option. The performance has been measured with Linux
on 400 MHz Pentium II PCs with Intel BX chip-sets. The upper and lower
graphs in Figure 13.3 show the throughput for intra-node and inter-node
communication, respectively.

With local communication, PVM-SCI reaches a peak performance of 32
MByte/s at a block size of 64 kByte. Increasing the block size does not yield
any further improvement. With remote communication, the maximum per-
formance drops dramatically down to 14 MByte/s. The round trip commu-
nication latency is 85 μsec. These performance figures are much worse than
those of ScaMPI (Chapter 14), which is attributed to the time-consuming
interrupts (not used by ScaMPI) and to the overhead of the memcpys. We
currently investigate methods to avoid the use of interrupts and we also plan
to utilize the fast Pentium MMX routines for memory copies.

Note that half of the peak performance is achieved with relatively small
messages of about 3 kByte. This is a typical feature of SCI, which supports
the fast transmission of small packets.

13.5 Conclusions

PVM-SCI is a complete implementation of the PVM standard for SCI. With
the PvmRouteDirect directive set, PVM-SCI utilizes the fast shared memory
communication primitives of SCI. When SCI is not available, PVM-SCI au-
tomatically downgrades to the default TCP protocol without the need to
change the application code.

PVM-SCI is fully compliant with the latest and probably final PVM re-
lease 3.4. The architecture has been kept open and modular to allow for
easy adaptation to other interconnects, such as Myrinet or ATM for exam-
ple. PVM-SCI initially tests the availability of interconnect adapters, starting
with the fastest (SCI), then trying ATM and finally checking for Ethernet.

This adaptive degradation is also used in the follow-up message-passing
environment Harness (Heterogeneous Adaptable Reconfigurable NEtworked
SystemS) [5]. The Harness project aims at combining and integrating network
layers such as Myrinet and SCI, as well as conventional network interconnects
(e.g. ATM). Other communication paradigms, like Active Messages or shared
memory may also co-exist on the cluster, and can be plugged in on demand.
PVM-SCI has been designed modularly so that it can be plugged into Harness
as soon as it becomes available.

In its current implementation, PVM-SCI is still too slow. We therefore ex-
amine methods to avoid the costly interrupt mechanisms (as done in ScaMPI)
and to use the fast MMX functions on the Intel processors for improving the
memory copying.

248 M. Fischer, A. Reinefeld

References

1. A. Basu, M. Welsh, and T. v. Eicken. Incorporating Memory Management into
User-Level Network Interfaces. Proc. Hot Interconnects V, Stanford University,
CA, August 1997.

2. J. Blum, T. Warschko, and W. Tichy. PULC: ParaStation User-Level Com-
munication. Design and Overview. Proc. IPPS/SPDP 98, Orlando, FL, March
98.

3. N. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic,
and W.K. Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro
15(1), pages 29–36, Feb. 1995.

4. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine – A Users Guide and Tutorial for Network
Parallel Computing. MIT Press, Boston, 1994.

5. Harness: Heterogeneous Adaptable Reconfigurable NEtworked SystemS.
http://www.epm.ornl.gov/harness.

6. IEEE Std 1596-1992. IEEE Standard for Scalable Coherent Interface (SCI).
Inst. of Electrical and Electronics Eng., Inc., New York, NY, August 1993.

7. MPI Software Technology Inc. Homepage. http://www.mpi-softtech.com.
8. L. Prylli and B. Tourancheaux. BIP: a New Protocol Designed for High-

Performance Networking on Myrinet. Proc. IPPS/SPDP 98, Orlando, FL,
March 98.

9. H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-Down Cache: A Vir-
tual Memory Management Technique for Zero-Copy Communication. Proc.
IPPS/SPDP 98, Orlando, FL, March 98.

10. Virtual Interface Architecture. Homepage. http://www.viarch.org.
11. H. Zhou and A. Geist. Faster Message Passing in PVM. Technical Report, Oak

Ridge National Laboratory, Oak Ridge, TN, 1995.

14. ScaMPI – Design and Implementation

L.P. Huse, K. Omang, H. Bugge, H. Ry, A.T. Haugsdal, E. Rustad

Scali AS, Norway
Email: {lph,knuto,hob,hwr,ath,eir}@scali.no

14.1 Introduction

MPI (Message Passing Interface) [7] is an established and de-facto standard
for information exchange based on the message-passing paradigm. MPI was
standardized by the MPI Forum in 1996. Academia, industry, and vendors of
high-performance computers drove the effort.

The MPI has a rapidly growing community as a standard user API (ap-
plication programming interface) for parallel programming. Today, MPI is
the preferred API for portable, parallel programs, and the success of the
standard can be illustrated by applications running on both shared and dis-
tributed memory systems. Examples of the former are systems from SGI and
Sun, whereas IBM, Cray (now SGI), and Scali deliver systems adhering to
the latter category. Applications written using MPI are deemed very porta-
ble, and they can easily be ported between shared and distributed memory
systems. Thus, seen from an ISV (independent software vendor), a message
passing application is more portable than an application using the shared
memory paradigm, since the message passing application can run on either
shared or distributed memory systems.

In the rest of the chapter the design and implementation of ScaMPI,
Scali’s high performance MPI implementation is presented. Key technical
achievements of ScaMPI are low latency, high bandwidth and flexibility of
transport medium as well as options for speeding up application performance
within SMPs by allowing the use of threads. The programming environment
for ScaMPI provides various built-in options for debugging and tuning. In ad-
dition ScaMPI is integrated with powerful third party software. Performance
of important ScaMPI primitives is discussed in light of recent performance
measurements. These measurements also document excellent scalability of
ScaMPI for up to 96 inexpensive dual CPU nodes.

14.2 Scali Systems

Scali systems use SCI as interconnect. To make affordable systems, Scali
has chosen to use standard I/O (input/output) buses, such as PCI [13] and
Sbus [5], as attachment point to the SCI interconnect fabric. SCI has specified
cache coherency as an option, but since the I/O buses for most workstations

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 249-261, 1999
© Springer-Verlag Berlin Heidelberg 1999

250 L.P. Huse et al.

are decoupled from the main memory bus by an I/O bridge (see Figure 14.1),
the I/O bus cannot intercept a processor accessing the local memory.

������

�	
 �	

Fig. 14.1. Block diagram of a node

This inhibits a global cache coherent memory model to be implemented
in hardware. A clear benefit of using the I/O bus as attachment point is
that the I/O buses are standardized. For the IHVs (independent hardware
vendors) this means having a larger market for their products, and larger
volumes again imply lower prices. Also, the evolution of new generations of
I/O buses, e.g., faster clock frequencies, wider buses etc., is less frequent
compared to the evolution of processors and their accompanying buses. As
a consequence, the cost for peripheral boards tends to be low compared to
special, proprietary hardware components.

14.3 The SCI Memory Model

The cache coherency in SCI is documented in detail. The memory consistency
model on the other hand, is left to the implementors. Thus, any memory con-
sistency model, such as the sequential, processor, weak, or release consistency
model might be implemented. This applies to systems using either the I/O or
the cache coherent processor bus as the attachment point. Software running
on SCI based systems must therefore either be explicitly or implicitly aware
of the memory consistency model provided by the system.

Systems using the I/O bus as the attachment point are in most cases
distributed memory systems, where each node runs its own instance of the
operating system. Such systems, e.g., SCI based, are able to provide a shared
address space programming model, where portions of the virtual address
space of one process can be made visible to a process running on another

14. ScaMPI – Design and Implementation 251

node. The conceptual simplicity of this model compared to the traditionally
layered ISO/OSI model can easily be illustrated. For two user level processes
running on different nodes to communicate, both need to map the same SCI
shared memory segment into their virtual address spaces. The SCI shared
memory is for performance reasons always physically located on the receiver
side. For two processes to communicate, the sender process writes data to the
remote memory segment and the receiver reads the data from local memory,
without any system calls or expensive protocol processing.

Middleware for this shared address space model must be explicitly aware
of the underlying memory consistency model, which is influenced by the cha-
racteristics of the processor, the I/O bridge, the SCI adapter, and the SCI
interconnect fabric. For example, common hardware techniques for perfor-
mance enhancements, such as write buffering, write combining, and prefet-
ching might be implemented in multiple of these hardware components. To
Scali, this illustrates two problems with the shared address space model: the
user must have an intimate knowledge of the hardware components, and very
few applications are written for the shared address space model.

14.3.1 Coordinating Use of Shared Locations

There are several ways of using shared locations to exchange data as needed to
implement message passing. One well known technique is to use the concept
of critical regions where only one process at a time has access to a particular
shared resource. An example from MPI is how to implement buffer allocation.
With mutual exclusion, an implementation can allow multiple sender nodes
to allocate receive buffers at a particular remote node from the same buffer
pool. This technique has been frequently employed in MPI implementations
for SMPs. The approach is simple and makes it easy to implement space ef-
ficient resource management policies and can be implemented with efficiency
between processors on the same memory bus. However, as the number of
communicating processes grows, contention for the involved locks may hurt
performance.

Efficient implementation of mutual exclusion locks requires atomic me-
mory operations. Atomic operations such as compare-and-swap and various
forms of fetch-and-op are available (or can be built with the available basic
atomic primitives) in most modern system bus architectures. The SCI stan-
dard specifies a number of such operations, but only a very limited atomic
operation support (fetch-and-increment-by-one) is available for the current
Dolphin PCI/SCI implementation [2].

Efficiency is also complicated by the fact that remote loads (fetching data
over the network) are an order of magnitude slower than local loads. To
achieve the atomicity provided by the PCI/SCI hardware in absence of pro-
perly implemented locking primitives on the PCI bus, all accesses to the
lock memory must go through the PCI/SCI hardware, i.e., they are remote
accesses from a performance perspective [10].

252 L.P. Huse et al.

A simple solution where locks are avoided is to make access to shared
locations disjoint with respect to stores, that is, only a single process has
the right to store to a particular location. For the example on dynamic buffer
allocation in the receiver, this means that there must be separate buffer pools
for each sender at each receiver. Thus this may look like a speed-at-cost-of-
space trade-off. However, with the option of allocating the buffer pool for a
particular sender at a particular receiver only when needed, the extra buffer
capacity spent can be kept low.

14.3.2 Ensuring Safe Data Transport in SCI – Checkpointing

Usually when transferring data from one node to another over a SCI network,
the data arrives at its destination fast and accurate. However, in a multi-node
shared memory environment there is always the possibility of nodes being
temporarily unavailable (e.g., due to high priority OS calls), data alteration
in the network due to electronic noise (detected by CRC checks), the I/O bus
may be occupied with other high priority traffic etc. All of these events are
detected in Scali systems, and those that are related to the SCI network are
corrected by the SCI driver. To make certain that the data arrives correctly
over the network, checkpointing needs to be employed.

Checkpointing is a common programming technique used in systems
where dynamic errors may occur, e.g. in shared memory and database sy-
stems. Before and after all operations sufficient status information is gathered
to check if the operation was completed successfully. If the checkpoint fails
the effects of the faulty operation have to be nullified and the operation has
to be repeated. For SCI, the checkpoint procedure is initiated by first flus-
hing all data onto the network. The checkpoint state is then derived from the
state of the driver and an interrupt counter. If the checkpoint state changes
during a data transfer, the data has to be retransmitted. A shadow of all ne-
cessary driver information is mapped into user space for fast checkpointing.
An example of using checkpointing in shared memory programming is given
in Figure 14.2.

14.3.3 Shared Address Space Programming without the
Drawbacks

To enable users to exploit the benefit of the shared address space model
without detailed hardware knowledge, standardized APIs are provided to
the application programmers. A large existing base of applications can then
be used directly (without modification of even old “dusty deck” applica-
tions), just by recompiling. The applications are thus able to communicate
efficiently, without being burdened by excess copying, system calls, interrupts
etc. as would have been necessary if a typical software stack of the traditional
ISO/OSI model had been used. Today, MPI [7], PVM [4], Fast Messages [11],

14. ScaMPI – Design and Implementation 253

and Split-C [1] are also available on Scali systems. ScaMPI is Scali’s own
high performance implementation of MPI, the others are available through
various academic institutions.

14.4 ScaMPI Design Goals

The following goals were set forth in the design process of ScaMPI:

Scalability: System size ranging from one to hundreds of nodes should be
supported.

Low latency: We aimed at message latency around 10 μs for exchanging MPI
messages from user level to user level. The latency of collective MPI
operations should grow with O(log(N)), where N is the size of the system.

High bandwidth: Point-to-point bandwidth should be close to the theoretical
maximum for the actual implementations. The bandwidth available to
each node performing MPI collective operations should be constant and
not be reduced with increased system size.

Fault tolerance: The SCI interconnect fabric might be subject to errors, such
as CRC errors, cables being unplugged etc. Such transient errors should
be transparent to applications. For example, it should be possible to
exchange cables while an application is running, without affecting it ex-
cept for reduced performance. Another example is that it should be pos-
sible to change the routing function in the SCI interconnect fabric, i.e.,
the communication paths, transparent to the running application.

Flexibility of transport medium: Although SCI shared address space was in-
tended as the primary transport medium, we aimed at leveraging this im-
plementation and support true shared memory as the transport medium
for MPI processes communicating on the same SMP node. The selection
of the actual transport medium should be automatic and transparent to
the user.

User friendliness: To ease application development we aimed at providing
different levels of startup procedures to accommodate different require-
ments, such as debugging, profiling, logging etc.

Thread-safe implementation: ScaMPI must support different mappings of
MPI processes to hardware resources. In a one-to-one mapping each MPI
process is mapped to its own CPU, while in the one-to-many model each
MPI process is mapped to a set of CPUs - typically all the CPUs in a
node. In the one-to-many model, explicit multi-threaded programming or
an automatic parallelization tool is used to efficiently exploit all system
resources. Here different threads constituting a single MPI process might
simultaneously request services from the MPI library. Thus, ScaMPI as
well as the SCI middleware had to be designed thread-safe in a way that
enables a high level of parallelism.

254 L.P. Huse et al.

14.5 ScaMPI Implementation

ScaMPI was designed to take advantage of SCI’s shared address space ar-
chitecture. The focus has been on utilizing those features ensuring the best
possible performance, both with respect to latency and bandwidth. A write-
only protocol [3] was chosen for two reasons. First, performance of remote
writes are better than remote reads, as described in [10]. Furthermore, using
a write-only protocol ensures cache coherency, even though the attachment
point is the I/O bus, as discussed in Section 14.3. Since reading data from
local memory is much faster than fetching it over the SCI network, ScaMPI
always use a remote-write-local-read policy. This contributes significantly to
fulfill one of the design goals of ScaMPI: to be able to scale performance to
very large systems.

14.5.1 Fault Tolerance

Three important items are required to securely manipulate data structures
on a remote node:

– Atomicity of multi-byte entities must be controlled. This implies that either
all or nothing of a multi-byte entity is modified, i.e., that it is never partially
modified. Consider for example a simple ring-buffer structure with a write
and a read index. The receiver polls the sender’s write index, and compares
it to the read index. If the two indices differ, the ring buffer contains valid
data. If the write index is represented by a two-byte entity, and if those
where updated one at a time, catastrophic errors could be the consequence
when the index wraps from the least to the most significant byte.

– Enforcing memory consistency, i.e., ensuring that all previously issued write
requests have been globally performed. For example, if one process writes
a block of data to a remote buffer, and then signals the completion of
the transfer by writing to a flag in the receiver node memory. If the me-
mory consistency is not enforced between the data transfer phase and the
signaling phase, the receiver might consume stale data.

– Error checkpointing. As discussed in Section 14.3.2, a transfer might have
been corrupted, e.g., the cable has been unplugged. A methodology of
checkpointing is needed to ensure correct data transfers.

The natural sequence of operations to securely transfer a data block and set
a flag at the receiver is depicted in Figure 14.2.

Scali’s SCI driver, ScaSCI, has combined the functionality of enforcing
memory consistency and checkpointing, to improve speed. As illustrated in
Figure 14.2, memory consistency has to be enforced before the checkpointing
routine is called. Otherwise, active outstanding write operations might be in
progress when the EndCheckPoint() routine is called, and those might later
be exposed to errors. Another important observation from Figure 14.2 is that

14. ScaMPI – Design and Implementation 255

void SendMsg(long *remoteFlag, void *remoteDst,
 void *localSrc, int sizeOfMsg)
{
 CheckPointToken token;
 StartCheckPoint (&token);
 do {
 Memcpy(remoteDst, localSrc, sizeOfMsg);
 MemBarrier();
 } while (EndCheckPoint(&token) != SUCCESS);

 StartCheckPoint (&token);
 do {
 *remoteFlag = SUCCESS;
 MemBarrier();
 } while (EndCheckPoint(&token) != SUCCESS);
}

void RecvMsg(long *localFlag, void *localSCIMem,
 void *localUser, int sizeOfMsg)
{
 while (*localFlag != SUCCESS) {
 sleep();
 }
 Memcpy(localUser, localSCIMem, sizeOfMsg);
}

Fig. 14.2. Pseudo-code for secure one-way data transfer

the side effect exposed to a remote memory region might be exposed more
than once, in case of error indications. The SCI responses might have been
subject to errors, and not the requests. If this is the case, the side effect has
taken place, but the requester node cannot distinguish between a failure of a
request and of its response. Therefore, the requester node has to re-issue the
data transfer. As a consequence, the data structures used in ScaMPI had to
be designed idempotent. A data structure being idempotent will be consistent
even if an update was carried out more than once.

Another important aspect from Figure 14.2 is that messages actually are
securely transferred to the remote node, before the sender is able to signal
to the receiver that the messages are ready for consumption. The time spent
to enforce memory consistency and to perform the checkpointing will be di-
rectly added to the latency of transferring a message. The impact will be
more severe the smaller the message is. To avoid this added latency, ScaMPI
has a combined message data structure for small payloads, the MPI message
envelope [7, Section 3.2.3] and a field, ready, indicating to the receiver that
this structure represents a new, unconsumed MPI message. ScaMPI uses 64
bytes to represent this information, including 32 bytes of MPI data payload.
As discussed above, atomicity, or merely lack thereof, must be handled. Since
few processor instruction sets have provisions for 64-byte atomic store opera-
tions, a mechanism to prevent the consumer from receiving a partly received
message had to be found. Even if the sender specifically wrote the ready field
as the last part of the transfer, the data could appear at the receiving node
in a different order, due to the possibility of reordering of packets in the SCI

256 L.P. Huse et al.

interconnect fabric. To avoid this pitfall, ScaMPI has included a CRC check
value in the structure to protect its integrity. This approach enables ScaMPI
to send self-synchronizing messages in a safe way. As an additional bonus, the
receiver may read the message while the sender completes enforcing memory
consistency and performs the checkpointing, thus reducing the latency.

14.5.2 User Friendliness

Scali has put an effort into making ScaMPI and its environment user friendly.
The execution of an MPI-program is started and controlled by a monitor pro-
gram (mpimon). The monitor takes two types of parameters on the command
line:

Parameters controlling the ScaMPI set-up. These parameters include custo-
mizing the set-up of SCI memory allocation, buffer sizes, barrier fa-
nin/fanout etc. The parameters are checked for validity and, if not cor-
rect, the program execution is aborted and appropriate error messages are
given. Being tuned for performance, ScaMPI by default allocates buffers
the first time a communication channel is used. For performance measu-
rements and communication debugging, ScaMPI can be set to initialize
all the communication channels at startup time.

MPI program names, their parameters and node specifiers. The parameters
are automatically distributed to all processes constituting the parallel
program, not only process zero. The node specifiers are checked for legal
node names. Each node can occur several times within a node specifier,
enabling more than one process per node. For full control over process-to-
node mapping, ranks are allocated sequentially from the node specifiers.

ScaMPI has the ability to have multiple MPI programs in one run. This
is specified by adding multiple blocks of MPI programs, parameters and node
specifiers on the command line to the monitor.

Input from the user (stdin) can be distributed to all or some of the
processes. Output from the processes (stdout and stderr) is displayed in
the window where the monitor was started. All processes inherit the running
environment from the monitor shell, e.g., the current directory path, i.e.,
where the monitor was started. The user can choose to have none, some or
all environment variables copied to the processes.

Scali has added some functionality to ScaMPI and the monitor to ease
debugging and to get a better overview of what is happening when running
an MPI program. Output from selected nodes can be printed in separate
windows or files. MPI programs can selectively be started within a separate
window or debugger to allow use of other debug/trace tools.

14.5.3 Third Party Software

From a user perspective, a Scali system interface is a parallel tools envi-
ronment. The parallel user environment consists of three basic components,

14. ScaMPI – Design and Implementation 257

system access control, parallel debugger and parallel performance analysis.
The purpose of a parallel tools environment is to create a single system image
of a parallel computer. It is however not possible to shield the user comple-
tely from the added parallel complexity needed to get more computational
power. But a high quality parallel programming environment contributes sig-
nificantly to reduce the time spent in developing and debugging code.

Any standard MPI parallel tools [15, 8] can be used with ScaMPI. Since
a Scali system is built from COTS (commercial off-the-shelf) technology by
using standard hardware and software components, third party parallel tools
by any independent cluster vendor can be used on a Scali system running
ScaMPI. To provide the ScaMPI user with basic state-of-the-art parallel
tools, ScaMPI is available with the TotalView [16] parallel debugger and
the Vampir [12, 14] parallel performance analysis tools.

The TotalView [16] graphical parallel debugger has support for the most
important parallel programming models: threads, MPI, PVM, and HPF. Sup-
ported platforms come from the major supercomputing vendors including
Compaq, Digital, SGI, IBM, and Sun. The main parallel feature is the single
point of control for debugging ScaMPI programs. From a single window it
is possible to control individual groups of processes, hide unnecessary and
display essential information. On startup, TotalView gives the user an option
to stop in MPI Init(), the starting point of any MPI program. After this
initial stop, the user can set appropriate action points before continuing the
parallel debug session. TotalView has a fast and intuitive GUI, with the pos-
sibility of data visualization, a useful aid in debugging numerical programs.
TotalView is designed for multiprocessing and offers the debugger features a
programmer expects.

Vampir [12] is a tool for performance analysis of MPI programs. In the
NHSE (National HPC Community Software Exchange) parallel tools re-
view [9] Vampir was rated as the best parallel performance tool. It is avai-
lable on all major supercomputer platforms. To collect performance data,
the ScaMPI program is linked with the VampirTrace library, and run. The
performance data is logged to a file for post-processing. Vampir ScaMPI per-
formance analysis helps the user organize the performance data, understand
application and communication behavior, evaluate load balancing, and iden-
tify communication hot-spots. A very useful feature is the extensive space-
time filtering of data to extract relevant information only. A time-line window
displays application and message passing activities and shows parallelism as
the sum of active non-communicating processes. Communication statistics
can be displayed for selected intervals of time and message length.

14.6 Performance Results

The tests were run on a 96-node system with dual Pentium II 450 MHz
processor PCs interconnected with PCI-SCI cards from Dolphin ICS [2]. The

258 L.P. Huse et al.

SCI network is organized as an 8 x 12 2D mesh/torus. ScaMPI delivered
a 9.4 μs ping latency and up to 76 MByte/s between two MPI processes
on separate nodes over the SCI network (4.5 μs and 130 MByte/s between
two processes on the same PC). This fulfills two of the ScaMPI design goals
(Section 14.4), low latency and high bandwidth.

As stated in the design goals for ScaMPI, latency of collective MPI ope-
rations should grow with O(log(N)), where N is the size of the system, while
bandwidth per node should be nearly constant for all system sizes. Restric-
tions of the bandwidth in multi-dimensional tori is analytically calculated in
Chapter 8 and indicates the feasibility of this goal. In the next two subsections
the achievement of these goals will be shown through practical measurements.
To get comparative results the test programs were run on a far more expen-
sive state-of-the-art 128-processor (MIPS R10k) Cray Origin 2000 equipped
with 192 MByte main memory.

14.6.1 Barrier

Barrier is a collective operation that carries no data, but synchronizes all
processes. Since barrier does not carry any data, it is a good measure for the
collective latency. ScaMPI’s barrier implementation uses a fixed fanin/fanout
tree and operates directly on SCI shared memory.

Nodes 2 4 8 16 32 48 64 80 96
Timing 8.1 8.2 9.3 20.6 24.4 26.1 29.9 30.8 33.1

Table 14.1. Barrier performance in μs

Barrier timing

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 20 40 60 80 100

Nodes

T
im

e
[u

se
c]

Fig. 14.3. Barrier performance compared to const ∗ log(N)

14. ScaMPI – Design and Implementation 259

Table 14.1 shows absolute timing of barrier over the SCI network. As
can be seen, this is a very fast implementation with sub-latency performance
up to 8 nodes! A barrier involving two processes on the same PC use only
1.4 μs. The Origin 2000 used 25.9 μs to synchronize two processes (739 μs for
64 processes) [6]. Figure 14.3 shows graphically how the performance results
of the barrier compare to a const∗log(N) trend. As can be seen, ScaMPI over
SCI shows a good match of the timing of a barrier, i.e., collective latency,
and a const ∗ log(N) trend.

14.6.2 All-to-All Communication

The most demanding communication situation for a machine is when all
nodes communicate with all the other nodes. Performance of MPI Alltoall()
is therefore a good measure of the aggregate bandwidth of a system.

Nodes 2 4 8 16 32 64 96
Throughput 30.9 35.2 36.5 31.1 32.3 31.7 26.2

Table 14.2. All-to-all communication performance per node in MByte/s.

Table 14.2 shows measured communication performance per node of all-
to-all communication for long messages over the SCI network. For two pro-
cesses on the same PC throughput was measured as 54.6 MByte/s. The SCI
based system shows far better scaling than the Origin 2000, which delivers
a per-node performance of 42.1 MByte/s between 2 processes, 26.9 MByte/s
between 16 processes and ends up with a mere 7.3 MByte/s for 32 proces-
ses [6]. The very poor performance scaling on the Origin 2000 may have to
do with interference from other user programs due to lack of resource reser-
vation.

The all-to-all performance is calculated on the basis of the network traf-
fic. Since MPI Alltoall() uses two buffers, an N-th part of the send buffer
is copied internally to the receive buffer and is therefore not part of the
network data volume. For all-to-all communication between two nodes, half
of the data is transferred and the other half is copied. This is the reason
for the apparently low performance between two nodes. The shift in perfor-
mance between 8 and 16 nodes is caused by a change of the algorithm. If
the algorithm for larger configurations had been used for all configurations
no performance shift would have appeared, but the performance for small
configurations would have suffered. For up to 8 nodes, the SCI network deli-
vers sufficient throughput for all nodes to communicate at full speed. This is
compliant with the constant-per-node performance of up to 64(= 8∗8) nodes
and a small decrease for 96 nodes. By going from a 2D to a 3D torus network,
the interconnect performance should scale “perfectly” to 8∗8∗8 = 512 nodes.
This conforms to the conclusions in Chapter 8.

260 L.P. Huse et al.

14.7 Conclusions

Our initial ambitions were to make a thread-safe, scalable, low latency, high
bandwidth, fault-tolerant, user friendly and flexible (with respect of transport
medium) implementation of the MPI standard. ScaMPI is meeting all of these
design goals.

The 96-node (192-processor) Scali system at PC2 in Paderborn is cur-
rently the world’s largest system using SCI as the interconnect technology.
Since Scali are using standard workstations as nodes in the parallel systems,
technology advances should ensure a continued and increasingly good price-
performance ratio. By using COTS components the performance growth does
not only apply to new machines, but the existing nodes of an upgraded ma-
chine can be passed on in an organization as personal desktop workstations.
This adds an important option for cost reduction.

By using a standard programming interface, MPI-conforming third party
applications will run on Scali systems without additional work, although op-
timizing for the architecture may give additional speedup. ScaMPI supports
a variety of options and tools to ease the programming effort to get to cor-
rect and efficient applications. As shown by the performance measurements
in Section 14.6.2, Scali systems scale well, thus enabling us to deliver very po-
werful systems to a low price. In this picture ScaMPI and its support modules
play an important role.

Acknowledgments

Thanks to Thierry Matthey at Parallab, for making performance numbers
on the Origin 2000 available, and to the service team at PC2, Paderborn, for
excellent support in bringing up their 192-processor system.

References

1. David E. Culler, Andrea Dusseau, Seth C. Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel Pro-
gramming in Split-C. In Proceedings of Supercomputing’93, Portland, Oregon,
November 1993.

2. Dolphin Interconnect Solutions. PCI-SCI Bridge Functional Specification, ver-
sion 3.01 edition, November 1996.

3. Manolis G.H. Katevenis, Evangelos P. Markatos, and Penny Vatsolak. The
Remote Enqueue Operation on Networks of Workstations. In Proceedings of
Workshop on Communication and Architectural Support for Network-based Par-
allel Computing, Las Vegas, USA, Lecture Notes in Computer Science. Springer-
Verlag, February 1998.

4. G.A. Geist and V.S. Sunderam. The Evolution of the PVM Concurrent Compu-
ting System. In Proceedings of COMPCON Spring’93, pages 549–557, February
1993.

14. ScaMPI – Design and Implementation 261

5. James D. Lyle. Sbus: Information, Applications, and Experience. Springer-
Verlag, 1992. ISBN 0-387-97862-3.

6. Thierry Matthey. Personal communication, 1999.
7. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

June 1995. Version 1.1.
8. National HPCC Software Exchange – Parallel Tools Library.

http://www.nhse.org/ptlib.
9. Review of Performance Analysis Tools for MPI Parallel Programs.

http://www.cs.utk.edu/˜browne/perftools-review/.
10. Knut Omang. Synchronization Support in I/O Adapter Based SCI Clusters.

In Proceedings of Workshop on Communication and Architectural Support for
Network-based Parallel Computing, San Antonio, Texas, volume 1199 of Lecture
Notes in Computer Science, pages 158–172. Springer-Verlag, February 1997.

11. Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging
on Workstations: Illinois Fast Messages (FM) for Myrinet. In Proceedings of
Supercomputing ’95, San Diego, 1995.
http://www-csag.ucsd.edu/papers/csag/external/HPVMFM-p.html.

12. Pallas GmbH. VAMPIRtrace for Solaris x86, 1998. Release 1.0 for VAMPIR-
trace version 1.5. http://www.pallas.de.

13. PCI Local Bus Specification, Revision 2.1.
14. Scali AS. ScaMPI Installation and User’s Guide version 1.6, 1999.
15. IEEE CS Task Force of Cluster Computing.

http://www.dgs.monash.edu.au/˜rajkumar/tfcc/, 1998.
16. TotalView Multiprocessor Debugger User’s Guide, 1998. Version 3.0.

http://www.etnus.com.

Part VI

Shared Memory Programming Models and
Runtime Mechanisms

Due to the remote memory access capabilities of the SCI DSM, SCI clusters
lend themselves readily to implement high-performance message-passing li-
braries. Several chapters of Part V show how remote writes can be utilized
to efficiently transfer data between sender and receiver.

Yet, the SCI DSM constitutes a shared physical address space only, disal-
lowing caching of remote memory contents. It is much more challenging to
devise and realize shared-memory or shared-objects abstractions in this envi-
ronment than it is to implement message-passing programming models. The
major challenge involved is to provide a global virtual address space that can
be conveniently and efficiently accessed by processes or threads distributed
in the cluster. Solutions will also have to address caching and consistency
aspects of shared memory models.

This part reports on projects either attempting to provide shared virtual
memory, shared objects or shared files on top of SCI DSM, or experimenting
with new runtime mechanisms facilitated by the SCI DSM, e.g., a macro
data-flow execution model.

The projects and approaches reported here are widely diverse, reflecting
the fact that this area bears a number of open research issues, e.g., mapping
shared SCI segments to the same virtual address in distinct processes or
replicating data to various nodes to improve performance while maintaining
consistency. Several contributions also point out that current-generation SCI
cluster hardware and device drivers are not fully adequate for shared-memory
abstractions, and propose approaches to overcome the limitations.

Chapter 15 describes how the global address space abstraction is realized
in the Split-C parallel language. Two implementations of the Split-C run-
time system are presented, one using Active Messages as the communication
layer, the other directly exploiting SCI remote memory accesses. Based on
performance and functional evaluations of these implementations, their limi-
tations are disclosed. The obstacles observed are partially due to the current

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 263-265, 1999
© Springer-Verlag Berlin Heidelberg 1999

264 Shared Memory Programming Models and Runtime Mechanisms

SCI equipment, e.g., restrictions imposed on the number and location of ex-
ported and imported SCI DSM segments or high access times to exported
and thus uncached local memory areas. A hybrid implementation strategy
combining the shared-memory and message-passing implementations of the
runtime system is proposed to overcome the drawbacks.

In Chapter 16, a comprehensive shared-memory programming interface
called SMI (for Shared Memory Interface) is introduced. SMI attempts to
hide peculiarities of the SCI DSM, e.g. the non-coherent memory model,
from the programmer in order to keep parallelization simple. Again, some
properties of the SCI hardware and driver pose problems for this approach.
SMI provides a standard set of functions to allocate, distribute, and (tem-
porarily) replicate shared memory regions, to start and distribute processes,
and to allow them to synchronize. Moreover, sophisticated facilities for sche-
duling loop iterations on processors as well as for load balancing are available.
SMI has been used in a number of application parallelizations, one of which
is reported in Chapter 22.

Chapter 17 reports on a project that goes beyond these two approaches
in that it builds a general global virtual memory on an SCI cluster, suppor-
ting true shared-memory programming, similar to a shared-memory multi-
processor (SMP) machine. The project combines SCI’s hardware DSM and
concepts of software shared virtual memory (SVM) systems to achieve the
ambitious goal. The resulting system, called SCI-VM, also addresses caching
of shared data over the SCI network and consistency maintenance, relying
on a relaxed memory consistency model and a kernel-level virtual memory
manager extending the SCI device driver and Windows NT memory manage-
ment. Several shared-memory programming systems can be supported atop
of SCI-VM, with two examples being described: a simple Single Program,
Multiple Data (SPMD) model and a distributed, POSIX-compliant thread
system. While SCI-VM is clearly experimental at the time of writing, the
performance results reported so far are quite encouraging.

A file system interface to SCI DSM is described in Chapter 18. This repre-
sents a further approach for sharing memory objects, in addition providing
symbolic naming and protection of shared objects. To support parallelism,
the interface is also augmented with synchronization mechanisms. A pro-
totype implementation in Linux, called SCIOS, is described, with different
protocols for allocating, migrating, and replicating pages of shared files span-
ning the SCI cluster. A notable feature is the remote swapping facility that
allows pages to be transferred to/from a remote node about 50 times faster
than to/from a local disk.

Yet another approach is introduced in Chapter 19, so-called parallel
CORBA objects. These parallel objects are extensions to a CORBA imple-
mentation on an SCI cluster. Thus, both distributed object-oriented pro-
gramming (through regular CORBA objects) as well as parallel processing
(through parallel objects) can be supported in a cluster. Parallel CORBA

Shared Memory Programming Models and Runtime Mechanisms 265

objects can use message passing internally to implement the parallelism. An
extended Interface Definition Language (IDL) has been developed that al-
lows to manage data distribution among the individual objects comprising a
parallel object. A runtime system, called Cobra, is presented that provides
the services to execute the parallel CORBA objects, e.g., allocating all the
required resources. A real-world application demonstrates the usefulness of
this system.

Finally, Chapter 20 covers a somewhat “exotic” system on an SCI cluster,
the Multithreaded Scheduling Environment (MuSE). MuSE is a runtime sy-
stem that executes programs with appropriate structure in a macro data-flow
manner on off-the-shelf hardware. That is, a computation can start execu-
tion on a cluster node when all its input data are available. The SCI DSM
is shown to be a good platform for this kind of execution for two reasons:
input data can be efficiently written to waiting threads and threads can be
efficiently migrated to nodes destined to execute them. The chapter descri-
bes the MuSE scheduling concepts, with a focus on the MuSE work stealing
algorithm and the decision whether to sequentially call (on the same node)
or to concurrently spawn (on another node) a computation.

15. Shared Memory vs Message Passing on
SCI: A Case Study Using Split-C

Max Ibel, Michael Schmitt, Klaus Schauser, Anurag Acharya

Department of Computer Science, University of California, Santa Barbara
email: {ibel,schmittm,schauser,acha}@cs.ucsb.edu
http://www.cs.ucsb.edu/research/sci

Non-coherent remote memory access with a simple load-store interface is
one of the characteristic features of the Scalable Coherent Interface (SCI). It
allows SCI to bridge the gap between efficient (and expensive) hardware im-
plementations of true coherent shared memory and low-performance software
implementations. It also allows SCI to be used as a substrate for efficient im-
plementations of higher-level communication mechanisms. In this chapter, we
evaluate the tradeoffs for using SCI to implement user-level message-passing
and a global address-space scheme with shared-memory segments. We per-
form this evaluation in the context of Split-C, an explicitly parallel language
which provides a global address-space abstraction as well as bulk transfer
operations.

For the message-passing implementation, we use SCI to implement Ac-
tive Messages and use Active Messages as the communication layer for the
Split-C runtime system. For the shared memory implementation, we use SCI
operations directly as the communication layer for Split-C. The direct imple-
mentation has the potential to provide a performance advantage by reducing
copying and synchronization. However, our SCI hardware poses problems
that make an efficient direct implementation very challenging. Our studies
show that neither paradigm is optimal in our current setting and suggest a
combination of both paradigms for increased efficiency.

15.1 Introduction

The two basic design choices for programming parallel machines are Message-
Passing and Shared Address Space. SCI promises efficient implementation of
both paradigms: it allows transport of messages with extremely low latency
and high bandwidth, thus providing an ideal base for message-passing ap-
plications. SCI also provides direct access to remote memory using plain
load-store transactions, thus providing an equally good base for shared me-
mory applications. In this chapter, we evaluate the trade-offs between both
communication schemes.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 267-280, 1999
© Springer-Verlag Berlin Heidelberg 1999

268 M. Ibel et al.

We perform this evaluation in the context of Split-C [3], an explicitly
parallel language which provides a global address space abstraction as well
as bulk transfer operations. We choose Split-C as it can be implemented using
message-passing or shared memory. Selecting a single high-level language also
allows us to focus on the differences in the communication mechanism more
easily.

Our message-passing implementation maps Split-C primitives to calls to a
runtime system based on a Active Messages [17] library. Our shared memory
implementation called DRMA (Direct Remote Memory Access) maps Split-C
primitives directly to SCI primitives.

The rest of this chapter is organized as follows. We give a brief introduc-
tion into Active Messages and Split-C in the remainder of this first section.
Sections 15.2 and 15.3 discuss the message passing and the shared memory
implementation respectively. Section 15.4 compares both schemes by experi-
mental evaluation. Section 15.5 then describes a hybrid implementation which
tries to combine the assets of both message passing and shared memory. Fi-
nally, we conclude in Section 15.6.

15.1.1 Introduction to Split-C

Split-C is a parallel extension of the C programming language and follows the
SPMD model of computation: a single thread of computation is started on
each processor. Both the parallelism and the data layout are explicitly speci-
fied by the programmer. Split-C provides a global address space in the form
of distributed arrays and global pointers, and supports efficient split-phase
operations (including bulk transfers) to access remote data. Arrays can be
distributed in cyclical or blocked fashion, and in multiple dimensions. Glo-
bal pointers are tuples of the processor number and a local address. Pointer
arithmetic on such global pointers can be cyclic or blocked.

Remote data in Split-C is accessed using split-phase operations. Split-
phase accesses separate the initiation of a memory operation (the request)
from the response, to hide the latency of the underlying communication net-
work. Split-C offers put and store operations for transferring data, and get
operations for retrieving data: put and get are acknowledged transactions,
while store is one-way. The split-phase nature of Split-C requires that the
basic memory operations (put, get, and store) keep track of outstanding
memory transactions. Every put or get request increments a counter to in-
dicate that an operation has begun but is not yet completed. When the data
has been successfully transferred, the counter is decremented. Unlike the get
and put operations, a store operation is one-way and uses two counters: one
is incremented on the sender when data is sent, and the other is incremen-
ted on the destination when the data is received. A node can issue explicit
sync statements to guarantee that all outstanding requests have been finis-
hed. The synchronous read and write operations are shortcuts for get or
put followed by a sync. Control flow in Split-C is augmented with barriers

15. Shared Memory vs. Message Passing on SCI 269

and atomic operations. To allow optimizations for parallel programs, Split-C
also offers library routines for large transfers (bulk put and bulk get) and
scatter-gather operations.

Split-C implementations have been built on top of Active Messages on
many computational platforms, including the TMC CM-5, Intel Paragon,
Meiko CS-2, IBM SP-2, and networks of workstations [11]. On a few machines
like the T3D, Split-C has been built directly on the hardware [1].

15.1.2 Introduction to Active Messages

Active Messages is a low-latency communication mechanism. Each active
message contains the address of a handler function which is executed on the
receiving processor upon arrival of the message. Message handlers are in-
tended to be short and execute quickly. In particular, message handlers are
not allowed to suspend. To eliminate complicated buffer management and
simplify deadlock considerations, Active Messages divides handlers into two
classes: requests and replies. This is similar to the request/reply protocol un-
derlying SCI. An active-message request can send a message to an arbitrary
processor; when it arrives at its destination, the specified request handler is
invoked. Request handlers may answer by sending a single reply message,
while reply handlers are prohibited from additional communication. Under
the Active Messages model, messages travel from user space (the send in-
struction) directly to user space (the message handler), avoiding any form of
buffer management and synchronization usually encountered in the traditio-
nal send & receive model. As a result, Active Messages can achieve an order of
magnitude performance improvement over more traditional communication
mechanisms.

Although quite primitive, Active Messages has become an important com-
munication layer because of its efficiency. Active Messages has been imple-
mented on many different hardware platforms, including the Meiko CS-2 [13],
Cray T3D [1], as well as clusters of workstations connected by FDDI [12],
ATM [16] and Myrinet [5]. The small overhead and low latency facilitates
building more complicated communication layers [15], makes it a desirable
target for high-level language compilers [4], like Split-C.

15.2 Message-Passing Implementation

We first describe our implementation of Active Messages on top of SCI. Next,
we describe the implementation of Split-C on top of Active Messages. Further
information on our message-passing implementation can be found in [7, 8, 9].

15.2.1 Active Messages on Top of SCI

There are several issues that an implementation of Active Messages must deal
with. We discuss protection, reliability, notification, and synchronization.

270 M. Ibel et al.

To provide protection, we must ensure that an unauthorized process
cannot interfere with another process on any node in the network. SCI le-
verages the virtual memory management provided by the operating system
to achieve protection. The SCI device driver controls the mapping of remote
memory segments into a process’ address space. Processes that do not share
a mapped memory segment cannot communicate.

To provide reliability, we must ensure that each message is delivered
to the destination once and only once. This is still a major research issue
for clusters of workstations which usually are connected by an unreliable
network which may drop packets (e.g. ATM). Fortunately, the SCI standard
guarantees that all messages are delivered and are delivered at most once.
However, SCI provides no guarantee concerning message ordering. Because of
the simple request-reply nature of Active Messages and the fact that messages
are sent in atomic network transactions, this does not pose a problem though.

For proper notification, we must ensure that the receiving node is no-
tified about incoming communication so that it can take appropriate action.
In the case of Active Messages, this means that the processor is notified upon
the arrival of a message so that it can invoke the message handler. There are
two standard ways of notifying the main processor: using interrupts or using
polling. Since interrupts are far too costly on most architectures, the common
solution is to have the processor check (poll) at regular intervals whether a
new message has arrived.

Polling also simplifies any required synchronization between the on-
going computation and incoming messages. The processor just does not poll
in critical sections, which ensures that incoming messages do not interfere in
unexpected ways with the running computation. However, in a non-dedicated
workstation polling wastes CPU time available to other processors.1

The ideal abstract data type for dealing with notification and synchro-
nization in this environment is a queue. This simple insight underlaid the
experience presented in [13] and was formalized in [2], where it was named
the Remote Queue abstraction. Sending processors just enqueue their mes-
sage on the remote queue. During a poll, the receiving processor just checks
whether something has been enqueued. If so, it removes the message from
the queue and processes it. This remote queue abstraction can be built easily
on traditional message-passing network interfaces, because they have a single
point of entry which essentially acts as a queue. It is the receiving processor’s
responsibility to pull the messages from the network interface and process
them.

1 In non-dedicated environments though, interrupts become more attractive
since they can achieve co-scheduling. Further information about an alterna-
tive message-passing implementation suitable for non-dedicated environments
by using a combination of polling and interrupts can be found in [14].

15. Shared Memory vs. Message Passing on SCI 271

A Simple Remote Queue Implementation

In our current implementation each processor establishes a queue for com-
munication with every other processor. This setup is shown in Figure 15.1.

req
uest

fro
m j

request buffer for P

replyfrom i

request buffer for P

request buffer for 1

request buffer for i

request buffer for 1

reply buffer

request buffer for j

Split-C code segment

Heap / Stack

Process i Process j

reply buffer

Split-C code segment

Heap / Stack

poll poll1
2

3

4

Fig. 15.1. The implementation of Active Messages on top of SCI.

To check whether a message has arrived, a processor checks all of the
incoming request buffers. If any one contains a message, the receiving pro-
cessor extracts the message, processes it, and sends a reply back. The poll
also checks whether any of the outstanding requests have been replied to yet
and extracts the reply and processes it. A processor that wants to send a
request to another processor with a full request queue polls the network until
outstanding requests have been replied to and free entries in the queue are
available. To ensure that no deadlocks can occur, a processor that is waiting
for a reply constantly polls the reply buffer as well as all of the incoming
request buffers. Under our scheme, every request has to send a reply, so that
the requester knows when it can reuse the request buffer. If an active message
request handler does not send a reply (for example in the case of the one way
Split-C store operation) we automatically insert a null reply message.

For our implementation we only use (non-blocking) SCI store operations.
On each processor we allocate a shared segment which can be accessed by all
other processors. Each processor reserves on its shared segments one reply
buffer as well as P incoming request buffers, one for each of its P peers. Each
of the message buffers is 64 bytes long and can be filled with a single 64-byte
block move instruction.

In addition, each processor dedicates for each peer a full page (4 kByte) in
the memory segment it exports to bulk transfers. To perform a bulk transfer,
we first use a tight inner loop of 64-byte block moves to store the data in the

272 M. Ibel et al.

remote page. Then we send a single active-message into the request buffer
indicating that the bulk data was deposited. The active-message handler then
moves the data into the correct location.

15.2.2 Split-C on Top of Active Messages

Implementing Split-C on top of Active Messages is straightforward. The re-
mote memory operations have to be mapped onto an equivalent set of active-
messages and the corresponding handlers.

1a 2a

2b3a

1b

3b Proc ProcProc

Memory

Value

Memory

Value

Counter

Fig. 15.2. Steps required for a Split-C get operation based on Active Messages.

Since get, put, and store all work in a similar fashion, we explain only
the implementation of a get in detail. The get operation applied to a global
address is sketched in Figure 15.2. It consists of the following three steps:

1. The requesting processor
a) examines the global address, extracts the processor number and sends

the get request to the remote processor and
b) increments the counter tracking outstanding requests.

2. The remote processor receives the request message,
a) reads the requested data, and
b) sends it back.

3. The requesting processor receives the reply,
a) stores the data, and
b) decrements the counter.

Step 1 corresponds to sending an active-message, while Steps 2 and 3 cor-
respond to active-message handlers (servicing the request or reply message,
respectively).

A put works in a very similar fashion, except that the request (1a) sends
the data to be stored on the remote side and the reply (2b) does not carry
any data but is only used to decrement the counter. The store operations
are inherently one way. The originating node increments its store counter
for each store, and the receiver also increments a local counter for every
received store. There are two possible synchronization mechanisms: When
the receiver knows how many store operations to expect, it can just wait

15. Shared Memory vs. Message Passing on SCI 273

for a specified counter value. If the number of stores that have been issued
is unknown to the receiver, the all store sync primitive performs a global
and thus more expensive synchronization, similar to a barrier, to ensure all
stores across the cluster have been completed.

The synchronous read and write operations are implemented using a
get/put operation followed immediately by a sync. A sync itself just waits
in a tight loop for all or specific outstanding gets or puts to finish.

15.3 Shared Memory Implementation

SCI’s shared address space support provides a global address space in hard-
ware and enables the optimization of reduced copying and synchronization
overhead compared to a standard message-passing implementation. For ex-
ample, the get can fetch the value from the remote memory using a plain sha-
red memory load operation; this leads to performance improvement, mainly
since additional copying to and from receive buffers is avoided and since the
CPU on the receiver side is not involved in these communication events.
In this section, we describe the implementation of Split-C directly on top
of SCI (we refer to this as the DRMA—Direct Remote Memory Access—
implementation). Further information about our shared memory implemen-
tation can be found in [10].

15.3.1 Split-C on Top of SCI

For now, we assume that the complete application memory (heap and stack)
of every node is exported to every other node. We examine the get, put,
store, read, write and sync as well as bulk transfer primitives and their
mappings to shared address space operations.

In contrast to the Active Messages implementation of get which requires
two 64-byte SCI stores, the DRMA implementation only needs one SCI load
operation2 to fetch the requested data and does not have to involve the pro-
cessor on the node which holds the data. Similarly, the put maps to a simple
SCI store. The store operation is equivalent to put since all primitives in
the DRMA implementation are inherently one-way. The read operation is
equivalent to get since the SCI load operation is blocking. The write ope-
ration is similar to put but since the SCI store operation is not blocking, it
requires an additional memory barrier to ensure the completion of the store.
A major advantage of DRMA is that sync can be implemented as a simple
memory barrier if we have outstanding put or store operations, otherwise as
a NOP. This significantly decreases the amount of necessary synchronizations
and thus better decouples the control flow across node boundaries.
2 After a table lookup to determine the mapping of the Split-C global pointer to

the requested data in the pool of imported segments.

274 M. Ibel et al.

Bulk operations can also be simplified. The semantics of Split-C asserts
that the destination of a message is specified by the sender, such that no
queuing needs to be performed by the receiver. This allows the DRMA im-
plementation to write incoming bulk messages directly to the destination ad-
dress, thus avoiding an extra level of data copying. In addition, the receiver
need not be notified of incoming messages.

15.4 Experimental Evaluation

We measured and compared the performance of both the message-passing
(Active Messages) and the shared memory (DRMA) implementation on our
SCI platform using a set of micro-benchmarks and application benchmarks.
For this study, we used four Ultra-30 workstations with 250 MHz CPUs, 128
MByte RAM, and PCI-based Dolphin network adapters using the LC-2 link
controller [6]. We used both a ring and switch topology but found for our
set of benchmarks that the switch does not improve throughput and only
increases latency. All of the measurements which are presented here were
therefore executed on a four-node SCI ringlet.

15.4.1 Micro-benchmarks

The simpler implementation of the Split-C primitives in the DRMA version
compared to the Active Messages version results in an improved latency for
the Split-C communication primitives. Table 15.1 shows the overhead of the
get and put primitives and the latency of the read and write primitives for
the Active Messages-based and for the DRMA-based runtime system. We are
assuming 8-byte data items in the DRMA case. Also, for message-passing,
we assume that the receiver is always polling and can immediately respond
to incoming messages, which is the best case. The overhead for the Active
Messages implementation is the sum of sender and receiver overhead.

get put read write

Active Messages 5.8μs 5.8μs 13.5μs 13.5μs
DRMA 5.6μs 2.9μs 5.6μs 11.5μs

Table 15.1. Overheads (get, put) and latencies (read, write) for Split-C primiti-
ves.

As expected, DRMA outperforms Active Messages for all cases by avoi-
ding buffering, by not involving the processor on the node containing the ac-
cessed data and by reducing the amount of synchronization necessary across
node boundaries.

15. Shared Memory vs. Message Passing on SCI 275

Figure 15.3 shows the latencies of the Split-C operations bulk get and
bulk put for the Active Messages based and for the DRMA-based runtime
system.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Transfer size (bytes)

Message Passing
Direct Remote Memory Access

Latency of bulk_get using Active Messages and DRMA

L
at

en
cy

 (
m

s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Transfer size (bytes)

Message Passing
Direct Remote Memory Access

L
at

en
cy

 (
m

s)

Latency of bulk_put using Active Messages and DRMA

Fig. 15.3. Comparison of Split-C bulk get and bulk put latencies using Active
Messages and DRMA.

For bulk put, DRMA performs consistently better than Active Messages
as expected. For bulk get, we see that the Active Messages-based version
performs worse for small data sizes and better for larger sizes, with a break-
even point at about 256 bytes. The reason is that the Active Messages version
is based on stores: the initiator of a get asks the owner of the data to write

276 M. Ibel et al.

it into the initiators memory using stores. For DRMA, the initiator directly
accesses the memory using load instructions, which are much slower (since
blocking) than stores.

We measured a sustained SCI store bandwidth of 66.6 MByte/s and a
sustained SCI load bandwidth of 9.4 MByte/s on our cluster. In our imple-
mentation, we therefore use the direct bulk get implementation only for data
sizes of up to 256 bytes and use message passing for larger data sizes. This can
be seen as a hybrid implementation that utilizes either the message-passing
or the shared address space approach whenever appropriate. As section 15.5
shows, there are more reasons to switch between the paradigms.

15.4.2 Application Benchmarks

We also ran several parallel applications to confirm our results. The measu-
rements are summarized in Table 15.2.

Active Messages DRMA
heat diffusion

bulk put 1.02ms 1.05ms
write 4.28ms 4.21ms
put 2.69ms 1.55ms
read 4.35ms 2.88ms
get 2.74ms 2.88ms

FFT (2M) 7.27s 9.58s
computation 1.56s 5.15s

communication 5.71s 4.43s

Barnes-Hut (32K) 40.7s 60.3s

Table 15.2. Application benchmarks for Split-C implementations.

We used several versions of a heat-diffusion kernel (grid size 128*16), each
of these employing a different Split-C primitive (bulk put, write, put, read,
get) for the communication phases. The bulk put version with Active Mes-
sages takes 1.02ms per iteration (computation + communication), whereas
the DRMA version takes 1.05ms. To see that the DRMA implementation
is somewhat slower is confusing at first. However, we measured the commu-
nication and computation time independently and found that computation
accounts for more than 90% of the execution time. While the communication
time using DRMA is cut by about 50%, the computation time increases about
10% and thus causes a net increase in execution time. The reason for this is
that memory imported from another node is never cached—remote references
always result in a network access. Especially, local memory accesses to the
pinned-down exported memory segments perform worse than local memory
accesses to not exported segments. Exporting of a substantial part of the ap-
plication memory can therefore slow down the computation significantly and

15. Shared Memory vs. Message Passing on SCI 277

thus nullify the increased communication performance with DRMA. This ad-
verse effect is lessened in the other versions (especially put and read) since
the communication phases are here more dominant in the execution time.

We also ran a fine-grained FFT kernel with 2M data points. This appli-
cation is highly optimized for locality and we can see that although DRMA
improves on communication time, the local computations are slowed down
by a factor of more than three. Finally, we ran ten time steps of a Barnes-
Hut simulation with 32K bodies. Like FFT, Barnes-Hut performance drops
significantly when using DRMA, due to slower local computation and slower
memory accesses.

The non-cacheable nature of local exported memory segments is an arti-
fact of our current SCI hardware and device drivers. When this limitation is
removed, we believe that DRMA will be usable for a wider range of applica-
tions than it currently is.

15.5 Hybrid Implementation

The Dolphin SCI adapter card is attached to the PCI I/O bus and therefore
cannot access an arbitrary virtual address in a remote process (as may be
required by the Split-C semantics). Remote accesses are limited to previously
allocated remote memory segments, each of a maximum size of 512 kByte. It
is not possible for large programs to allocate all of the globally addressable
data structures into the remote segments.3 Thus, it is necessary for the re-
mote processor to service some requests, since it is the only entity capable of
doing the address translation. In this section we describe a basic framework
and mapping strategies for a hybrid implementation which utilizes both the
DRMA and the Active Messages runtime system.

15.5.1 Basic Framework

The basic framework of our hybrid implementation services remote requests
by message-passing if the requested data is not in a currently mapped remote
segment. If the current strategy permits (see Section 15.5.2 for a discussion
of possible mapping strategies), we re-map exported segments to incorporate
the requested data in the current working set of the global address space.
The procedure is as follows:

1. On the requesting node:
a) If the requested data is on a currently mapped remote segment, fulfill

the request with DRMA; if not, fulfill the request with message-
passing.

3 The limit for the total application memory (on all nodes) is with our current
SCI cards 40 MByte, since we cannot map more than 80 segments at any time.

278 M. Ibel et al.

b) If the current mapping strategy permits, send a mapping request as
a special active message to the node that holds the requested data;
if not, return successfully.

2. On the node holding the requested data:
a) Unmap the existing exported segment according to the current map-

ping strategy.
b) Map the segment with the requested data (using the mmap() inter-

face).
c) As long as (a) and (b) have not finished, deliver the requested data

(on the not yet exported memory segment) with the message-passing
interface.

Note, that we do not require the more expensive4 sci map shm() interface
for steps 2(a) and 2(b). We can avoid this by employing sci map shm() only
during startup to create a pool containing the maximum possible number of
exportable segments and using only mmap() and memcpy() during re-mapping
to change the virtual address translation and move data between the pinned
down pool of exported segments and the heap.

However, the cost for re-mapping memory segments is still relatively high
(110μs in the best case) since it requires in addition to the mmap() and
memcpy() a broadcast of the new mapping to all nodes that import that
segment. Therefore, an efficient re-mapping strategy is important.

15.5.2 Mapping Strategies

We propose three different strategies to co-employ shared address space and
message-passing in the design of a global address space:

– Greedy : Whenever a segment is not yet mapped, we perform the memory
access using message-passing, but also make sure that the requested seg-
ment is mapped as soon as possible. Evicted segments are chosen randomly.

– Adaptive: We keep counters on memory segment hits and only map a new
segment after a configurable number of requests via message-passing. The
segments with the fewest number of hits since the last eviction decision
can be expelled.

– Sampling : We monitor the program using only message-passing for a fixed
time period (sample phase). After that period, we map only the most
profitable memory segments and use this static memory layout for another
time period (production period), after which we repeat the process.

4 We measured the time for establishing a memory mapping using PCI-SCI to be
in the range of several hundred milliseconds.

15. Shared Memory vs. Message Passing on SCI 279

15.6 Conclusions

In our study, we have analyzed two different implementations of Split-C on
an SCI cluster. In the message-passing implementation the Split-C primitives
map to an Active Messages-based runtime system, whereas in the shared
memory implementation (DRMA) they map directly to corresponding SCI
primitives.

We have shown that SCI is able to provide an efficient global address space
substrate as well as good message-passing performance. However, while the
raw communication performance of SCI in the DRMA implementation is
impressive, our experiments showed that our current hardware and drivers
impose constraints that limit the utility of SCI when used for a direct shared
address space implementation.

A major obstacle is the limited number of memory segments that can
be imported. While the on-board address translation table of our Dolphin
SCI cards allows up to 8192 entries, we have not been able to import more
than 80 segments at any time. Furthermore, on systems without an I/O-
side MMU, each imported memory segment needs to start on a physical 512
kByte-boundary, which limits the number of exportable memory segments.
To some extent, this can be alleviated by choosing large memory segments
(up to 512 kByte), or by dynamically mapping/unmapping memory segments
between nodes. The high cost for map/unmap can be mitigated by a hybrid
implementation that switches to Active Messages to hide the segment map-
ping latency.

Another problem is the larger memory access time of local (but exported)
data: We observed that while normal cache lines can be fetched from the L1
and L2 cache in 12ns and 40ns, respectively, every access of local memory that
has been exported to other node takes roughly 60ns. This means that only
applications that have a high communication-to-computation ratio should
map memory remotely. This complicates the design of the runtime system
and the compiler and may preclude the use of direct memory accesses for
many programs with a broad communication footprint.

Nevertheless, a direct remote memory implementation of Split-C allows
remote data accesses without any processor involvement on the remote pro-
cessor, unlike a message-passing implementation. We believe that an archi-
tectural improvement of the SCI adapter cards together with an optimized
hybrid Split-C implementation as outlined in Section 15.5 can effectively
combine the assets of both message-passing and shared memory for our SCI
platform.

References

1. R. Arpaci, D. Culler, A. Krishnamurthy, S. Steinberg, and K. Yelick. Empi-
rical Evaluation of the CRAY T3D: A compiler perspective. In International
Symposium on Computer Architecture, June 1995.

280 M. Ibel et al.

2. E. A. Brewer, F. T. Chong, L. T. Liu, S. D. Sharma, and J. Kubiatowicz.
Remote Queues: Exposing Message Queues for Optimization and Atomicity. In
7th Annual Symposium on Parallel Algorithms and Architectures, July 1995.

3. D. E. Culler, A. Dusseau, S. C. Golstein, A. Krishnamurthy, S. Lumetta, T. von
Eicken, and K. Yelick. Parallel Programming in Split-C. In Proc. of Supercom-
puting, November 1993.

4. D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von Eicken. TAM —
A Compiler Controlled Threaded Abstract Machine. Journal of Parallel and
Distributed Computing, 18, July 1993.

5. D. E. Culler, L. T. Liu, R. Martin, and C. Yoshikawa. LogP Performance
Assessment of Fast Network Interfaces. IEEE Micro, 1996.

6. Dolphin. PCI-SCI Adapter Programming Specification. Dolphin Interconnect
Solutions Inc., November 1997.

7. M. Ibel, K. E. Schauser, C. J. Scheiman, and M. Weis. Implementing Active
Messages and Split-C for SCI Clusters and Some Architectural Implications. In
Sixth International Workshop on SCI-based Low-cost/High-performance Com-
puting, September 1996.

8. M. Ibel, K. E. Schauser, C. J. Scheiman, and M. Weis. High-Performance
Cluster Computing Using Scalable Coherent Interface. In Seventh International
Workshop on SCI-based Low-cost/High-performance Computing, March 1997.

9. M. Ibel, K. E. Schauser, C. J. Scheiman, and M. Weis. High-Performance
Cluster Computing Using SCI. In Proc. of Hot Interconnects V, August 1997.

10. M. Ibel, M. Schmitt, K. E. Schauser, and A. Acharya. An Efficient Global
Address Space Model with SCI. In Proceedings of SCI Europe ’98, September
1998.

11. A. Krishnamurthy, K. E. Schauser, C. J. Scheiman, R. Y. Wang, D. E. Culler,
and K. Yelick. Evaluation of Architectural Support for Global Address-Based
Communication in Large-Scale Parallel Machines. In 7th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, 1996.

12. R. P. Martin. HPAM: An Active Message Layer for a Network of HP Worksta-
tions. In Proc. of Hot Interconnects II, August 1994.

13. K. E. Schauser and C. J. Scheiman. Experience with Active Messages on the
Meiko CS-2. In 9th International Parallel Processing Symposium, April 1995.

14. M. Schmitt, M. Ibel, A. Acharya, and K. E. Schauser. Adaptive Receiver
Notification for Non-Dedicated Workstation Clusters. In Proc. of the 1998
Int’l Conference on Parallel Architectures and Compilation Techniques, October
1998.

15. L. W. Tucker and A. Mainwaring. CMMD: Active messages on the CM-5.
Parallel Computing, 20(4), April 1994.

16. T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Net-
work Interface for Parallel and Distributed Computing. In Proc. Symposium on
Operating Systems Principles, 1995.

17. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Mes-
sages: a Mechanism for Integrated Communication and Computation. In Proc.
of the 19th Int’l Symposium on Computer Architecture, Gold Coast, Australia,
May 1992.

16. A Shared Memory Programming Interface
for SCI Clusters

Marcus Dormanns, Karsten Scholtyssik, Thomas Bemmerl

RWTH Aachen, Lehrstuhl für Betriebssysteme, Kopernikusstr. 16,
D-52056 Aachen, Germany
email: contact@lfbs.rwth-aachen.de
http://www.lfbs.rwth-aachen.de/

16.1 Introduction

Maybe the most noticeable and distinctive feature of SCI is its shared me-
mory capability, i.e., the transparent access to segments of shared memory,
exported by remote compute nodes. However, until now this is only rarely
employed for application parallelization. Instead, message passing on top of
SCI is often used (see, e.g., Chapters 13 and 14) for several reasons:

– Performance: Message passing programming requires to explicitly code
communication operations. Doing so, it is often simpler or at least more
natural to take care of performance aspects [6].

– Software legacy: A large number of already existing parallelized applicati-
ons are based on message passing, typically employing MPI or PVM. This
is a good motivation for standard message passing programming interfaces
on top of SCI.

– SCI peculiarities: The type of shared memory that is offered by current
implementations of I/O bus-based SCI adapters comes with some pecu-
liarities (see [2] and Chapter 3):
– The lack of a cache coherency layer forces to completely switch off ca-

ching of remote memory to keep the memory model simple.
– The probability of data transmission errors in certain situations.

But there are also good reasons for shared memory programming, which
highly justify to explore shared memory application parallelization on SCI
clusters:

– Simplicity: Shared memory parallelization is commonly accepted as being
simpler than dealing with message passing. This applies especially to the
situation when an already existing sequential application is subject to par-
allelization and the parallel program cannot be developed from scratch.

– Scalability of the parallelization process itself: Relying on the shared data
paradigm, it is possible to parallelize one time-critical module after ano-
ther. This provides the ability to arbitrarily scale the amount of work (and
therefore money) spent in the parallelization process with respect to the
expected performance benefit.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 281-290, 1999
© Springer-Verlag Berlin Heidelberg 1999

282 M. Dormanns, K. Scholtyssik, T. Bemmerl

– Computer architecture trends: While most parallel architectures of the
past followed the distributed memory approach combined with message
passing programming, several recently introduced machines (e.g., Sequent
NUMA-Q and SGI Origin; see [3] for an overview) follow the NUMA shared
memory approach, as SCI does.

In this chapter, a programming interface that enables a convenient and ef-
ficient shared memory parallelization on SCI clusters, called SMI (for Shared
Memory Interface), is introduced. It has been developed with special em-
phasis on hiding functional and performance peculiarities of SCI from the
programmer to allow a simple and efficient parallelization process. It offers
standard shared memory programming services, like allocation of shared me-
mory regions and synchronization, as well as sophisticated parallelization
support, e.g., loop scheduling.

SMI is implemented as a library on top of basic SCI functions that are pro-
vided by device drivers (e.g., creating and mapping cluster-wide segments of
shared memory; see Chapter 3). Bindings for C/C++ as well as for Fortran 90
(or Fortran 77 with DEC/Cray pointer extensions) are provided. Supported
operating systems are Unix (e.g., Solaris and Linux) as well as Windows NT
which is especially popular on PC-based clusters. The applicability of SMI is
not limited to SCI clusters. It may be used on all systems that provide shared
memory segments in some way. Examples that have already been incorpora-
ted are symmetrical multiprocessor architectures (workstations, PCs, and a
HP/Convex SPP) and LAN-interconnected clusters with a software shared
virtual memory (SVM) system [7].

In the following sections, the properties of current SCI clusters that influ-
ence shared memory application programming are analyzed and the applica-
tion programming interface is sketched.

16.2 Platform Properties: System Image and Memory
Model

16.2.1 System Image and Operational Model

In distinction to a dedicated parallel system like those from Sequent or SGI,
a cluster is not operated by a single system-wide operating system, but by
individual autonomous operating system instances on the compute nodes.
Under these circumstances, there is no standard procedure to share an entire
process’ address space among the cluster compute nodes, nor to spread and
schedule several threads of a single process on different nodes. The reasons
are that neither the standard virtual memory managers nor the schedulers are
coupled. This prohibits use of the well-known thread-based shared memory
programming model [4], if one is not willing (for good reasons) to accept

16. A Shared Memory Programming Interface for SCI Clusters 283

segment, located

P0 P1

on node 1

M

P0 P1

node 0

shared region

interconnect
memory-system coupling

(e.g. SCI) M

node 1

segment, located
on node 0

process

thread of activity

address space

Fig. 16.1. The operational model of SMI

considerable adaptations of the given platform (i.e., operating system and
SCI device driver). Nevertheless, it is possible, as described in Chapter 17.

The alternative, which is employed in SMI, is to base a programming
model on individual globally shared segments that are shared among auto-
nomous processes (i.e., mapped into their virtual address spaces) that are
executed on the different cluster compute nodes. For multiprocessor compute
nodes, a user can freely choose between using multiple threads within a single
process per compute node or setting up multiple processes per compute node,
each with a single thread, avoiding to mix different shared data programming
methodologies. Figure 16.1 illustrates SMI’s operational model.

16.2.2 Memory Model

The memory model of a NUMA shared memory parallel system deals with
two aspects:

– performance and
– coherency.

While performance aspects have already been addressed in earlier chapters
in depth, coherency (which is not limited to cache coherency) is an essential
functional aspect. While remote memory cannot be cached due to the inability
of implementing SCI’s cache coherency layer on an I/O-bus network adapter
card, it is possible to cache globally shared memory at the compute node
on which it is physically located. Note that switching off caching alone does
not re-establish data coherency automatically. Prefetched reading (by the
SCI adapters) as well as write buffers (on the SCI adapters as well as on
the processors) generally prevent data coherency. This applies already to an
individual symmetric multiprocessor [1].

It is essential to hide a non-coherent memory model from an application
programmer to maintain simplicity. The common way to do so is to invali-

284 M. Dormanns, K. Scholtyssik, T. Bemmerl

date read buffers and/or to flush write buffers appropriately at synchroniza-
tion points. This is also done by SMI and eventually results in a memory
consistency model that is known as release consistency.

16.3 User Front-End

On Windows NT clusters, several features which are essential for parallel pro-
cessing and considered to be standard features on Unix clusters, are missing:

– invocation of the execution of a process on a remote compute node, and
– I/O redirection to other compute nodes.

For this purpose, a graphical front-end together with a remote execution
service have been developed. Both are not limited to SMI programs, but also
used to start, e.g., SVM (Shared Virtual Memory) parallel applications [7].
The main features are:

– Simple interactive specification of the run-time configuration, e.g.,
– the number of processes,
– the machines to execute the processes on,
– the user account to execute the processes in, and
– the common command line parameters.

– A remote execution service to start the processes of a specified configura-
tion on the respective compute nodes within the specified user environment.

– Redirection of input and output (standard streams as well as error streams)
into the front-end, using a separate window for each process.

– Resource allocation and management features, e.g.,
– limiting the set of compute nodes that can be selected (e.g., select only

those with a SCI adapter),
– locking of compute nodes to prevent undesirable interferences of different

applications.

Figure 16.2 shows a screen-shot of this front-end.

16.4 The Application Programmer’s Interface

The following subsections describe the major functions of the Shared Memory
Interface.

16. A Shared Memory Programming Interface for SCI Clusters 285

Fig. 16.2. Screen-shots of the frontend, used to manage parallel applications (top:
specification of configuration and resource management, bottom: I/O redirection).

286 M. Dormanns, K. Scholtyssik, T. Bemmerl

16.4.1 Initialization and Execution Environment

Before any cooperation and communication of the individual processes of a
parallel application is possible, it is necessary to call the initialization function
SMI Init. This function has to be called collectively. This means that it
represents a global synchronization point. It is not necessary that all processes
enter the function at the same time, but no process will return from such a
function until the last process entered it.

During this initialization, some globally shared memory segments are al-
located for internal purposes, e.g., to store synchronization variables. After
initialization, each process can request a couple of parameters regarding the
run-time configuration with a call to the respective function, e.g.,

– the total number of processes, P ,
– a unique process rank between 0 and P − 1,
– the number of (multiprocessor) machines employed, M ,
– a unique rank of the machine that a process is executing on,
– the ranks of the machines that other processes execute on.

Machine ranks and even more information about which processes execute
on the same (multiprocessor) compute node are of interest to enhance data
locality and therefore to increase application performance within a NUMA
environment. To simplify this, SMI ensures that processes which execute on
the same compute node possess consecutive process ranks.

16.4.2 Memory Management

The building blocks of applications which have been parallelized with SMI,
are shared memory regions. A shared memory region is a consecutively ad-
dressable global memory section which is mapped into each process’ virtual
address space. To enable the usage of pointers and their exchange among
different processes, SMI maps shared memory regions to identical addresses
in each process’ virtual address space. This is an essential precondition for
dynamically assembled data structures like lists, trees, etc.

To account for the NUMA performance characteristic, each shared me-
mory region can be assembled out of several segments which can be phy-
sically located on different cluster nodes. A programmer has the possibi-
lity to choose between three assembly policies: UNDIVIDED, BLOCKED, and
CUSTOMIZED. UNDIVIDED states the simplest case in which the entire region
consists just of a single segment that is allocated on a specified compute node.
In a BLOCKED distribution, each compute node contributes a physically local
segment to the entire region. All segments are mapped consecutively to esta-
blish a single undivided shared memory region. In this case, the size of each
segment is proportional to the number of processes, residing on the respective
compute node. With the CUSTOMIZED distribution policy, a programmer can
specify an arbitrary concatenation of segments.

16. A Shared Memory Programming Interface for SCI Clusters 287

The collective function call to establish a shared memory region is:

SMI Create shreg(int TotalSize,
int DistPolicy, int* DistParams,
int* RegionId, void** Address)

The returned RegionId is used afterwards to refer to the corresponding
region.

For several applications, a flat piece of globally shared memory might be
sufficient, e.g., to host a large array of some type. But for other applications,
dynamic memory allocation inside a shared memory region might be impor-
tant. SMI provides the possibility to install a memory manager for a shared
memory region with a collective call:

SMI Init shregMMU(int RegionId)

The memory manager itself allocates all data structures within that re-
gion (to keep track of the free and allocated memory portions) to allow all
application processes to dynamically allocate memory within that region.
This can be done with the functions:

SMI Imalloc(int Size, int RegionId, void** Address)

and

SMI Cmalloc(int Size, int RegionId, void** Address)

The SMI Imalloc function can be called by individual processes. Atomi-
city and therefore correctness of such operations is ensured by SMI. In con-
trast, SMI Cmalloc is a collective function. Its only difference to SMI Imalloc
is that upon return, all processes know the start address of the allocated piece
of memory while with SMI Imalloc only a single process does. Corresponding
to these functions, SMI {I|C}free are used to release dynamically allocated
memory.

The fact that the remote fraction of a globally shared memory region
cannot be cached frequently accounts for serious performance degradations
(see Chapter 17). Observing that it is not necessary for a parallel applica-
tion to really share a data structure all the time, SMI provides services to
temporarily replicate a shared region by the function:

SMI Switch to replication(int RegionId, ...)

and to switch back to sharing with:

SMI Swich to sharing(int RegionId, int CombineMode, ...)

An important property of this functionality is that the replicated region
resides at the same address of the process’ virtual address space as the shared
region did before. Therefore, all pointers remain valid. Although a region is

288 M. Dormanns, K. Scholtyssik, T. Bemmerl

replicated, it can be meaningful to allow local modifications by the processes,
as long as it is possible to combine the replications to a common consistent
view afterwards. This is for example the case if the region contains an array
that is used for accumulation operations. The common consistent view can
then be re-established by summing all the replicated instances. Several such
operators are provided and can be specified by the parameter CombineMode
(e.g., max and add for different data types).

16.4.3 Synchronization

For the purpose of process synchronization, mutexes, barriers, and progress
counters are provided. All those synchronization primitives ensure an easy-
to-use memory model for the application programmer by suitable invalida-
tion/flushing of read/write buffers. The resulting consistency model is com-
monly referred to as release consistency [1].

For the use of mutexes, the functions SMI Mutex init, SMI Mutex lock,
SMI Mutex trylock, SMI Mutex unlock, and SMI Mutex destroy are provi-
ded, implementing the common semantics. An application-wide barrier is per-
formed by calling SMI Barrier. A progress counter denotes a set of counter
variables, one for each process. Each process can increment its own coun-
ter (SMI Increment PC) and wait until the counters of a single other pro-
cess or all other processes reach a certain value (SMI Wait individual PC or
SMI Wait collective PC).

16.4.4 Loop Scheduling

Typically, loops are the major sources of compute time demands in algo-
rithms. Therefore, most parallelization approaches try to split a loop’s index
range into independent subsets that are executed by different processes. A
major requirement of such splittings is that the computational loads induced
by the subsets are evenly balanced. Determining such a splitting can be quite
complicated. The computational demands of individual loop iterations may
vary with the loop indices and may be unknown in advance. In presence of a
NUMA performance characteristic, the computational demand may further
depend on the specific node that a loop iteration is being processed on. De-
pending on the shared data that is required to process a certain loop iteration
and the physical location of that data, there will be well-suited and ill-suited
processes to schedule the iteration upon.

To free the programmer from the burden of determining an efficient loop
splitting, advanced loop scheduling algorithms have been incorporated into
SMI [8]. The approach is to install one work queue for each process. The total
index range is initially split among the work queues such that each process can
request indices without interference with others. During loop processing, the
indices are granted in small chunks to the requesting processes, decreasing in

16. A Shared Memory Programming Interface for SCI Clusters 289

size with increasing progress. In case that the local work queue of one process
runs out of work, indices are automatically transferred from highly loaded
work queues to the empty one. Therefore, load is dynamically balanced.

SMI’s loop scheduling facilities extend this strategy to NUMA clusters in
that the physical distribution of data (i.e., shared regions) is considered for
the initial index assignment to work queues as well as for the dynamic load
balancing process.

A typical code fragment that employs SMI’s loop scheduling services to
parallelize a loop is sketched below:

SMI Loop init(&LoopId, TotalStartIdx, TotalEndIdx,
SMI PART ADAPTED BLOCKED);

do
{

SMI Get iterations(LoopId, &LoopStatus,
&ChunkStartIdx, &ChunkEndIdx);

for (i=ChunkStartIdx; i<=ChunkEndIdx; i++)
{

/* process index i */
}

} while (LoopStatus != SMI LOOP READY);

Several further functions allow to specify the load balancing strategy in
more detail.

16.5 Conclusions

SMI has been developed for shared memory application parallelization on
all types of parallel machines that provide shared memory in some form,
but with special emphasis on SCI-interconnected cluster systems. SMI has
already been used in several parallelization efforts:

– the GROMOS96 molecular dynamics simulation code (Chapter 22),
– a module of an airline flight scheduling system [5],
– simulation of control problems with Matlab/Simulink, and
– simulation of room acoustics [9].

SMI started as a small library with just a few functions and grew over
time to cope with the demands raised by these projects. It now comprises
about 50 functions.

In our projects, we found that shared memory parallelization on SCI
clusters is a meaningful approach regarding both, the required effort for the
parallelization process itself and the performance of the resulting parallel
application. SMI has proved to offer a suitable application programmer’s
interface for this purpose.

290 M. Dormanns, K. Scholtyssik, T. Bemmerl

References

1. S.V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tuto-
rial. IEEE Computer, Vol. 26, No. 12, pages 66–76, Dec. 1996.

2. R. Butenuth and H.-U. Heiß. Shared-Memory Programming on PC-based SCI
Clusters. Proc. SCI Europe ’98, held as a stream of EMMSEC (European Mul-
timedia, Microprocessor Systems and Electronic Commerce Conference and Ex-
position), Sept. 1998.

3. D. Culler, J.P. Singh, and A. Gupta. Modern Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers, 1998.

4. S. Kleiman and S. Devang. Programming with Threads. Prentice Hall, 1996.
5. S. Lankes. Parallelisierung einer Komponente eines Flugplanungs-Codes auf ei-

nem speichergekoppelten PC-Cluster. Diploma Thesis (in German), Chair for
Operating Systems, RWTH Aachen, Germany, April 1998.

6. T.A. Ngo and L. Snyder. Data Locality on Shared Memory Computers under
Two Programming Models. Technical Report 93-06-08, Univ. of Washington,
Dept. of CS, and IBM Research Report RC19082, 1993.

7. S.M. Paas, M. Dormanns, T. Bemmerl, K. Scholtyssik, and S. Lankes. Com-
puting on a Cluster of PCs: Project Overview and Early Experiences. Proc.
1. Workshop Cluster Computing, Technical Report CSR-97-05, TU Chemnitz,
Dept. of Computer Science, Nov. 1997.

8. O. Sinnen. Loop-Scheduling und Splitting-Verfahren auf NUMA Multiprozesso-
ren. Diploma Thesis (in German), Chair for Operating Systems, RWTH Aachen,
Germany, 1997.

9. S. Tholen. Parallelisierung raumakustischer Simulationsalgorithmen für SCI-
Cluster. Diploma Thesis (in German), Chair for Operating Systems, RWTH
Aachen, Germany, 1998.

17. True Shared Memory Programming on
SCI-based Clusters

Martin Schulz

Lehrstuhl für Rechnertechnik und Rechnerorganisation, LRR–TUM
Institut für Informatik, Technische Universität München
email: schulzm@in.tum.de
http://wwwbode.in.tum.de/Par/arch/smile/

17.1 Introduction

Due to their excellent price–performance ratio, clusters built of commodity
off–the–shelf PCs and connected with low–latency network fabrics are beco-
ming increasingly commonplace and are even starting to replace massively
parallel systems. According to their loosely coupled architecture, they are
traditionally programmed using the message passing paradigm. This trend
was further supported by the wide availability of high–level message passing
libraries like PVM [3] and MPI [20] and intensive research in low–latency,
user–level communication architectures [8, 26, 34].

Besides the message passing paradigm, which relies on explicit data dis-
tribution and communication, a second one exists, the shared memory pa-
radigm, which offers a global virtual address space for sharing data between
processes or threads. It is preferably utilized in tightly coupled machines like
SMPs that offer special hardware support for shared memory. It is generally
regarded as the easier programming model, especially for programmers who
are not used to parallel programming, but it comes at the price of higher
implementation complexity either in the form of special hardware support or
in the form of complex software layers. This prohibits the widespread use of
shared memory programming models on cluster architectures as the necessary
hardware support is generally missing.

Both programming paradigms have a large application base. Therefore,
a comprehensive software infrastructure constructed for a specific platform
has to support both paradigms efficiently. Only this ensures the broadest
possible applicability of an architecture to already existing programs and
gives the freedom of paradigm choice for implementing new parallel codes.
The existence of such a software base is therefore a main component for the
success of any new architecture.

However, the shared memory paradigm is mostly neglected on cluster ar-
chitectures. Even SCI clusters, despite SCI’s hardware distributed shared
memory (HW-DSM) capabilities, are traditionally programmed using the
message passing paradigm. This deficiency is caused by SCI’s inability to
provide a global virtual memory abstraction which is the prerequisite for any

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 291-311, 1999
© Springer-Verlag Berlin Heidelberg 1999

292 M. Schulz

true shared memory model. This gap is bridged in our work by merging SCI’s
remote memory access capabilities with techniques from traditional software
DSM systems resulting in a global transparent virtual memory which we call
SCI Virtual Memory or SCI-VM. This system provides a flexible base for
the development and implementation of true shared memory programming
models on top of SCI [14].

This chapter describes the endeavor of implementing the SCI-VM as a
software layer on Windows NT and standard Dolphin PCI-SCI adapter cards.
Based on this software layer, the global address space can be combined with
different execution models and synchronization constructs to form a variety
of shared memory programming models. This is demonstrated here using two
selected programming models, the concepts of which are described in depth
as well. Models like these enable clusters to execute true shared memory ap-
plications without major porting efforts which closes the gap between tightly
and loosely coupled systems.

The remainder of this chapter is organized as follows. Section 17.2 pre-
sents the basic design and the core mechanisms of the SCI-VM, followed by
a discussion of the challenges involved in this design in Section 17.3. Section
17.4 shows how the SCI-VM can be utilized to implement shared memory
programming models. Section 17.5 then presents such a programming model
based on the SPMD principle, with performance results of SPMD programs
given in Section 17.6. In Section 17.7 an overview of a second SCI-VM pro-
gramming model, a fully transparent thread library for clusters, is given which
constitutes an SMP-like environment on top of SCI clusters. The chapter is
then concluded by a brief overview of related work in Section 17.8 and by
some final remarks in Section 17.9.

17.2 Designing a Global Virtual Memory

The main prerequisite for shared memory programming on clusters is a fully
transparent, global memory providing applications with the abstraction of a
cluster–wide global process with a single virtual address space. This section
describes a software layer that provides such a cluster-wide memory abstrac-
tion, the SCI Virtual Memory or SCI-VM (see also [19, 28]). It forms the basis
for any kind of shared memory programming model on top of SCI-based PC
clusters.

17.2.1 Building Block 1: SCI-based Hardware DSM

The SCI-VM should be directly based on the HW-DSM provided by SCI
rather than deploying a traditional software DSM system with all its pro-
blems like false sharing and complex differential page update protocols [18].
Only this exploitation of HW-DSM enables the SCI-VM to benefit from the

17. True Shared Memory Programming on SCI-based Clusters 293

special features and the full performance of the interconnection technology.
Additionally, the implementation of synchronization primitives should direc-
tly utilize atomic transactions provided by SCI to ensure greatest possible
efficiency.

17.2.2 Building Block 2: Software DSM Systems

Unfortunately, SCI alone cannot provide a global virtual memory abstraction
as required by shared memory programming models. Both its hardware and
software components only target the utilization of large, contiguous, and
permanently pinned memory segments. In order to overcome these limitations
and to reach a fully transparent implementation of a global virtual address
space, the SCI remote memory capabilities have to be augmented by concepts
and mechanisms well known from traditional software DSM systems, like data
distribution at page granularity, on–demand access to remote pages, and a
relaxed consistency model [24].

17.2.3 Combining Both Building Blocks to the SCI-VM

Together, the building blocks described above allow the formation of the
transparent virtual address space which we call SCI-VM. The memory resour-
ces are distributed at the granularity of pages and these distributed pages are
then combined into a single global virtual address space. In contrast to pu-
rely software based systems though, no page has to be migrated or replicated.
All remote pages are simply mapped using SCI’s HW-DSM mechanisms and
then accessed directly. Due to the large amount of necessary mappings (in
the worst case one for each remote page), these mappings are handled on de-
mand with a similar concept as realized in the paging mechanisms of modern
operating systems (OSs). The SCI-VM therefore represents a cluster–aware
extension of an OS’s virtual memory management.

This concept is further illustrated in Figure 17.1 for a two–node system.
In order to establish a global virtual memory abstraction, a global process
abstraction also has to be built with team processes as representatives for the
global process on each node. These processes are running on top of the global
address space which is created by mapping the appropriate pages from either
the local physical memory in the traditional way or from remote memory
using SCI HW-DSM.

The mapping of the individual pages is done in a two–step process. First,
the requested page has to be located in the SCI physical address space from
where it can be mapped into the PCI address space using the address trans-
lation tables (ATT) of the SCI adapter cards. From there, the page can be
mapped with the help of the processor’s page tables into the virtual address
space of the local team process. The different mapping granularity in these
two steps poses problems; while the latter mapping can be done at page gra-
nularity, the SCI mappings can only be done on the basis of segments in the

294 M. Schulz

Virtual address space on A Virtual address space on B

Physical memory on A Physical memory on B

PCI address space on A PCI address space on B

SCI physical address space

Abstraction of a global distributed process

Threads Threads

Team on A Team on B

Node A Node B

Fig. 17.1. Principal design of the SCI Virtual Memory

size of 512 kByte or 128 pages. This limitation is due to the current imple-
mentation of the PCI-SCI adapter cards [6]. To overcome this difference, the
SCI-VM layer has to manage the mappings of several pages from one single
SCI segment. The mappings of the SCI segments themselves will be managed
with an on–demand, dynamic scheme very similar to paging mechanisms in
OSs.

17.2.4 Locality Issues and Caching

The main potential problem in the SCI-VM is the issue of data locality.
Although SCI achieves extremely low latencies, even when compared to other
SAN networking technologies, remote memory reads still take one to two
orders of magnitude longer than accesses to the local memory. This problem
is further increased by the fact that SCI remote memory can by default
not be cached as the PCI bus is not capable of snooping the memory bus
thus prohibiting the implementation of the optional cache coherence protocol
defined in the SCI standard [11].

Each access to the SCI remote memory would therefore suffer from the
full latency penalty of the SCI network, which is roughly 5μs round-trip, cau-
sing a major performance problem for applications which are transparently
distributed on top of the SCI-VM. One of the possible solutions is to incohe-
rently enable caching of remote SCI memory and manage the incoherences by
applying a relaxed memory consistency model. This would allow to take ad-
vantage of the rich memory hierarchy of modern computer systems reducing
the impact of the poor performance of remote memory operations. As can
be seen later in Section 17.6, some applications only suffer from overheads in
the range of a few percent in this model.

17. True Shared Memory Programming on SCI-based Clusters 295

17.3 SCI-VM Implementation Challenges

The design discussed above presents several interesting implementation chal-
lenges. The most severe is related to the integration of the concepts presented
above into the underlying OS, in this case Windows NT and its virtual me-
mory manager (VMM).

17.3.1 Mapping of Individual Page Frames

In order to implement the SCI-VM system, it has to be possible to map
arbitrary physical memory locations into the virtual memory address space
of the team processes. For this purpose, Windows NT offers the concept of
Section Objects [5], which allow to map sections of physical memory in a way
similar to memory–mapped files. These kind of mappings, however, exhibit
two significant problems: (1) physical regions have to begin at 64 kByte bo-
undaries, preventing the programmer from specifying single arbitrary pages,
and (2) memory can only be mapped into non-committed memory areas of
the virtual address space. This means that the SCI virtual memory concepts
cannot be applied to already existing memory segments, preventing the dis-
tribution of static data that has been allocated and initialized at the load
time of the process.

As long as Windows NT, like most other mainstream OSs, does not of-
fer the required functions described above, the only way to overcome these
shortcomings is to perform mappings at page granularity directly at proces-
sor level, bypassing the OS. This can easily be done with the help of a kernel
mode driver. After getting access to the page directory via the Pentium II
page directory base register (PDBR) [12], the address of the corresponding
page table for a specific virtual page can be computed and then manipulated.
When doing this, the flags representing the page’s state and properties have
to be adjusted appropriately. Specifically, the cache attributes have to be set.

This approach, however, has some severe consequences for the OS. As it
is completely bypassed and therefore unaware of the manipulations, its stabi-
lity and robustness may be impaired. However, based on several experiments
using first implementations of the SCI virtual memory concept, Windows NT
has proven to exhibit an acceptable stability. The critical point during the
execution of a program using direct page mappings is its termination. While
freeing a process’ memory resources, Windows NT attempts to clean up its
own page table entries. When it comes across unexpected entries introduced
by the SCI-VM that are not consistent with its internal data structures, it
generates a kernel panic and halts the processor. Especially in connection
with memory committed by dynamic link libraries, this problem can be ob-
served. It is therefore a vital necessity to erase all own entries from the page
tables before terminating the program. This guarantees a clean program ter-
mination and ensures the stability of the OS. These results, however, are only

296 M. Schulz

preliminary as detailed information on the internals of the Windows NT me-
mory manager is presently not available to us. Due to this, the implications
on the OS have not yet been analyzed in detail.

17.3.2 Dynamically Paged Memory

Closely related to the issue above is the utilization of dynamically paged
memory. Only this allows a true extension of virtual memory to a cluster–
wide virtual memory. This, however, causes an additional problem: as SCI
only provides hardware DSM on the basis of each node’s physical memory,
only virtual memory pages which are pinned into a physical page frame can
safely be accessed via SCI. To still allow the utilization of pageable memory, a
dynamic locking scheme has to be applied. A fixed, configuration–dependent
number of pages is kept pinned in physical memory and only these pages are
allowed to be imported by other nodes. Whenever an additional page not
included in the set of locked pages is requested, one pinned page is selected
to be unpinned. At this moment, any mapping existing onto this page from
any remote node is invalidated and marked as not present on these nodes,
thereby making it safe to unpin the page on the local node. This then makes
the page again eligible to be paged out of memory by the OS.

The notification of all nodes of the unpinning of a page is a global ope-
ration and therefore costly. However, the performance impact is likely to
be comparable to that of local paging to secondary storage. Due to this,
programs using the SCI-VM should, like standard sequential programs, stay
within the limitations of the available physical memory. The possibility to
utilize paged memory, however, allows the programmer to compensate for
momentary peaks in memory utilization and allows program testing on smal-
ler cluster configurations. It therefore adds to the convenience provided by
the SCI-VM and aids in achieving the goal of full transparency and SMP–like
behavior for clusters. The techniques used for this endeavor are very simi-
lar to those used to implement distributed, memory mapped file systems as
described in Chapter 18.

17.3.3 Enabling Caching Using Relaxed Consistency

An additional problem is imposed by the fact that, although the SCI standard
[11] defines a complex and efficient cache coherency protocol, it is not possi-
ble to cache remotely mapped memory in standard PC-based SCI clusters.
This is caused by the inability of PCI-based SCI adapter cards to perform
bus snooping on the system bus. However, caching is necessary to overcome
the problem of the large latencies involved when reading transparently from
remote memory. The only solution here is to apply a relaxed consistency
model [1] that allows to enable caching while coping with the possible cache
inconsistencies.

17. True Shared Memory Programming on SCI-based Clusters 297

In order to allow for the greatest possible flexibility, the SCI-VM layer
does not enforce a specific cache consistency protocol, but merely provides
mechanisms that allow applications or higher level programming models to
construct application–specific consistency protocols. For this purpose, the
SCI-VM offers the functionality to flush the current memory state of the local
node to the SCI network and to synchronize the memory of individual nodes
with the global state by invalidating all local buffers including the caches.
This functionality is implemented through mechanisms that allow to control
both the SCI adapter card with its internal buffers and the CPU’s memory
model by providing routines to flush the local caches and write buffers.

17.4 Framework for SCI-VM-based Programming
Models

The SCI-VM, as it has been presented above, does not form a complete pro-
gramming model that is suitable for the development of parallel programs. It
only provides a global view onto the distributed memory resources of an SCI
cluster combining them into one single virtual address space on all nodes.
This memory abstraction can then be utilized to build a variety of shared
memory programming models on top of it generating a full framework for
shared memory programming models on top of SCI–based clusters. This sec-
tion discusses the mechanisms and functionality provided by the SCI-VM
to aid in such developments together with a brief overview of the current
implementation status. Additionally, two examples for SCI-VM based pro-
gramming models are introduced below in Sections 17.5 and 17.7, proving
the functionality and flexibility of the SCI-VM concept.

17.4.1 SCI-VM Interface

The interface exported by the SCI-VM to support the development of higher
level programming models can be split into two components: an interface for
managing the distributed shared memory and an interface to control the SCI-
VM environment. The latter one is indispensable, as the SCI-VM creates not
only a global virtual address space, but also a global process abstraction that
holds this global virtual memory. Therefore, the SCI-VM is directly connected
with all issues regarding the configuration of the cluster and the management
of this process abstraction. This part of the interface includes routines to
query the number of participating compute nodes, the local node number,
to control process attributes, and to ensure a global process termination
across all participating OS instances. In addition, this interface also includes
a simple messaging mechanism that allows to invoke call-back routines on
remote nodes as this is useful for the implementation of most programming
models.

298 M. Schulz

The interface giving access to the actual shared memory functions of the
SCI-VM consists only of a few routines. The core is a routine for allocating
memory in the global virtual address space. In its simplest form, it behaves
like a malloc call, transparently allocating memory that is striped across all
nodes at the finest possible granularity. An additional, optional parameter
provides the capability of influencing the memory distribution of the newly
allocated memory. This enables the user of the SCI-VM to optimize the data
locality of the application if required or beneficial, while still allowing com-
plete transparency whenever no data locality information is available.

In addition to this core routine for memory allocation, a few support
routines are provided. They deal with giving access to a statically allocated
configuration memory and with providing full transparency also for statically
allocated variables. Those routines are normally only necessary at program
or library startup time for initialization purposes.

17.4.2 Tradeoff Between Transparency and Performance

As already mentioned, this interface provided by the SCI-VM forms the basis
for the development and implementation of any shared memory programming
model on top of an SCI cluster. This can range from simple models with
explicit resource control to fully transparent models providing an SMP-like
environment for SCI clusters and can include systems with special compiler
support. In any case, each specific programming model represents a tradeoff
between transparency, which provides convenience for the programmer, and
direct and explicit resource control, which allows for optimizations to achieve
best possible performance. This tradeoff has to be carefully chosen to fit the
needs of the programmers for which the model is intended.

17.4.3 Current Status of the Framework

The implementation of the SCI-VM and its shared memory programming
model framework is currently in an early state and not yet complete. The
final architecture is shown in Figure 17.2. The main part of the SCI-VM
will be implemented as a Windows NT kernel mode driver based on top of
two further drivers, the SCI device driver and a VMM driver to augment
the Windows NT virtual memory management as described above. The ker-
nel mode functionality is provided to the user through a user–mode library
implementing the interface described above.

At this time, the SCI-VM core is still realized in user level on top of a
preliminary kernel/user–mode interface. In kernel mode, only the two lower–
level drivers exist and are directly used from user level to construct the global
virtual memory abstraction. The user–mode part is currently, although con-
ceptually separated, still implemented together with the existing program-
ming model, the SPMD model discussed in the next section. This affects

17. True Shared Memory Programming on SCI-based Clusters 299

PC hardware PCI-SCI adapter

SCI
device
driver

VMM
kernel-mode

driver

Windows NT
kernel

interface

SCI-VM user library

Transparent
thread
library

SPMD
programming

model models

further...
Shared memory applications

boundary

Shared memory
programming model

User/Kernel

Fig. 17.2. System architecture including the SCI-VM and supported programming
models

mostly the memory allocation routine which is implemented in a specialized
synchronized version for this programming model. Its detailed description is
also included in the next section.

This preliminary implementation of the SCI-VM architecture was chosen
to ease the work on a first working SCI-VM that can be used for evalua-
tion purposes and for debugging the VMM extension in kernel mode. Future
versions will strictly separate the SCI-VM from the programming model as
shown in the design presented above. Only this will provide the intended
flexibility of the SCI-VM. This architectural refinement, however, will not
have any impact on the performance compared to the preliminary version;
the performance results presented below are therefore also valid for a full
featured SCI-VM.

17.5 SPMD Programming Model on Top of SCI-VM

The first programming model implemented using the SCI-VM concepts is
a model designed according to the Single Program Multiple Data (SPMD)
principle. This model was chosen due its simple execution model which makes
it ideal for experimenting and debugging, while still allowing the evaluation
of the transparency of the SCI-VM.

17.5.1 The Execution Model

The SPMD programming model realizes a very simple concept of parallelism
by allowing one thread of activity based on the same binary image of the
executable per node. Due to this execution mode and due to the synchro-
nous manner of allocating global resources, which will be discussed below,
this programming model can be classified as a Single Program Multiple Data

300 M. Schulz

(SPMD) model. Within the actual parallel execution, however, this synchro-
nism is not fully enforced; it is possible to implement independent threads of
control on each node as long as the restrictions regarding resource allocation
are observed.

17.5.2 Allocating Shared Memory

The SPMD programming model offers a central routine to allocate shared
memory. It reserves a virtual address segment that is valid on all nodes within
the cluster and performs the appropriate mappings of interleaved local and
remote memory into this address range. The memory resources are thereby
distributed in a round robin fashion at page granularity, i.e., at a granularity
of 4 kByte (on x86 architectures). This results in an even distribution of the
memory resources across the cluster while trying to avoid locality hot spots.

This allocation routine has to be called by all nodes within the cluster
simultaneously with the same parameters. It is therefore the main constraint
that causes the SPMD properties of the programming model. This is currently
necessary to request memory resources from all nodes during the allocation
process. In the future, this constraint will be eliminated by a more complex
SCI-VM implementation which allows to interrupt remote nodes to request
remote memory.

The allocation itself is a three step process. In the first step, the con-
tribution of the local node to the new global segment is determined and
an appropriate amount of local physical memory is allocated. In the second
step, each node enters the physical locations of all local pages together with
its node ID into a global list of pages. After the completion of this operation
on all nodes, a virtual address segment is allocated at the same location on
each node and all pages in the global list are mapped into this newly created
address segment. Local pages are mapped directly from physical memory,
whereas remote pages are first mapped into the PCI address range and from
there into the virtual address space. Upon completion of the page mappings
on all nodes, the allocation process is completed and the new virtual address
is returned to the caller.

17.5.3 Synchronization

Shared memory programming models need mechanisms to coordinate acces-
ses to shared data and to synchronize the execution of the individual threads.
For this purpose, the SPMD SCI-VM programming model provides the fol-
lowing three mechanisms: global locks without any association to data struc-
tures, cluster–wide barriers, and atomic counters that can be used for the
implementation of further, specific synchronization mechanisms.

All of these mechanisms are implemented based on atomic fetch–and–
increment transactions provided directly in hardware by the SCI adapter

17. True Shared Memory Programming on SCI-based Clusters 301

cards in the form of designated SCI remote memory segments. Read accesses
to these segments automatically trigger an atomic fetch–and–increment. This
transaction atomically increments the value at the memory location specified
in the read transaction and returns the original value of the memory location
as the result of the read operation.

While the atomic counters can be directly implemented using the ato-
mic SCI transactions, locks and barriers need additional concepts. Locks are
implemented using two separate counters, a ticket counter and an access
counter. Each thread trying to acquire a lock requests a ticket by incremen-
ting the ticket counter. The lock is granted to the thread if and only if the
value of the ticket counter equals the value of the access counter. On release
of the lock, the thread increments the access counter and thereby grants the
next waiting thread access to the lock.

The implementation of barriers utilizes one global atomic counter that
is incremented by each thread on entry into the barrier. When the counter
reaches a value that is divisible by the number of threads in the cluster, all
threads have reached a barrier and are now allowed to continue. To distinguish
multiple generations of one barrier, an additional local, non-shared counter
is maintained. This counter keeps track of the number of times the barrier
has been executed.

Currently, all waiting operations required by locks and barriers are im-
plemented using simple spin waits. This is not a major problem as there is
currently only one thread per node. In the future, however, this will be re-
placed using blocked and spin-blocked waits with a tight integration into the
thread scheduling policies to allow more flexibility.

17.5.4 Consistency Model

The SPMD programming model utilizes a relaxed consistency model to enable
the caching of remote memory. Most of the consistency enforcing mechanisms
are implicitly embedded into the shared memory synchronization operations
to ease the use of the programming model as this hides the relaxed consistency
model from the direct view of programmer and instead offers the familiar
shared memory synchronization primitives.

Barrier operations implicitly perform a full synchronization of all memory
within the cluster. This is achieved by performing a flush of the current
memory state to the network together with a complete invalidation of caches
and local buffers on all nodes.

The consistency enforcing mechanisms embedded into locks provide a se-
mantics similar to release consistency [1]; after acquiring a lock, the local
memory state is invalidated, and before the unlock or release operation, lo-
cal buffers are flushed to the network to force the propagation of the local
memory state to remote nodes. This semantics guarantees that accesses to
shared data structures, which are guarded by locks to implement mutual
exclusion, are always performed correctly in a consistent manner.

302 M. Schulz

In addition to this embedded consistency, the SPMD programming model
also provides a routine for explicit memory synchronization. This routine
performs a full flush and invalidation of the local memory on the node it has
been called. However, this routine should only be necessary in special cases
when working with unguarded data structures as all other cases are already
covered by the embedded consistency enforcing mechanisms.

17.6 Experiments and Results

In order to evaluate the concepts presented above, we implemented a few
small numerical kernels and ported an existing shared memory–based volume–
rendering application using the described SPMD programming model. All
codes utilized the shared memory in a fully transparent fashion without any
locality optimizations. Also, the relaxed consistency model was applied only
through the synchronization mechanisms described above without requiring
any code modifications.

17.6.1 Experimental Setup

All of the following experiments were conducted on an SCI cluster in a two
node configuration. This reduced version of the cluster was chosen due to
current limitations in the implementation. Future version will overcome these
limitations and are expected to scale to significantly larger cluster configura-
tions. Each compute node in the cluster is a Pentium II (233 MHz) based PC
with a 512 kByte L2 cache. The motherboards of these systems are based on
the Intel 440FX chip-set. We deployed the PCI–SCI adapter cards, Revision
D from Dolphin ICS [6]. These cards are equipped with the Link Controller
LC-2 which allows to operate the SCI network at a raw bandwidth of up to
400 MByte/s per link.

The OS for all experiments was a standard Windows NT 4.0 (Build 1381,
SP 3). The driver software for the SCI adapter cards was also supplied by
Dolphin ICS through the SCI Demokit in version 2.06.

17.6.2 Results for the Numerical Kernels

The first experiments were conducted using three small numerical kernels:
linear sum, standard dense matrix multiplication, and one iteration of the
successive over-relaxation (SOR) method. All of these kernels make use of one
contiguous virtual memory segment in which the program’s data structures
are mapped.

For each of these codes, three different experiments were performed: a
parallel version on top of the global memory provided by the SCI-VM, a
sequential version on top of local memory to get a baseline comparison for

17. True Shared Memory Programming on SCI-based Clusters 303

the speed–up values, and a sequential version on top of global memory to
get information about the overhead incurred by using the global memory
abstraction. Based on the results from these experiments, two key values
were computed: speed–up as the ratio of sequential execution time on local
memory to parallel execution time and overhead obtained from the ratio of
sequential execution time on global memory to that on local memory. The
results for two different sizes of the virtual segment are presented in Table
17.1.

Memory size Local seq. Speed–up Overhead
Linear sum 256 kByte 4128 μs 0.92 63.01 %

1024 kByte 16549 μs 1.06 53.56 %
Matrix multiplication 256 kByte 4912 ms 1.97 0.48 %

1024 kByte 42731 ms 1.89 5.2 %
SOR iteration 256 kByte 296 ms 1.53 11.1 %

1024 kByte 1225 ms 1.58 5.3 %

Table 17.1. Performance results for the numerical kernels

The linear sum performs poorly; applied to small problem sizes, no speed–
up, but rather a slight slow–down can be observed. Only when applied to
larger problem sizes, a small speed–up is possible. This can be explained by
the fact that this algorithm traverses the global memory range only once and
therefore does not utilize any temporal locality through the caches. The only
applicable mechanisms to increase the performance are the implicit prefet-
ching of cache lines and the prefetching facilities that are implemented within
the SCI hardware. The result is a rather high overhead and consequently a low
speed-up. In addition, the linear sum is an extremely short benchmark which
causes the parallel version of the algorithm to infer significant overhead. This
can only be improved by applying the algorithm to larger data sizes.

The matrix multiplication algorithm, however, behaves almost optimally
by achieving a nearly perfect speed–up. This can be explained by the high
exploitation of both spatial and temporal cache locality which is documented
in the extremely low overhead numbers. When applying the scheme to larger
data sizes, however, this overhead increases as the working set no longer fits
into the L2 cache. Due to this, an increased number of cache misses has to
be satisfied through the SCI network which causes additional overhead. This
also leads to a slight decrease of the overall speed–up.

The third numerical kernel, the SOR iteration, shows a very good per-
formance as well. This is again the result of an efficient cache utilization
with respect to both temporal and spatial locality. In contrast to the matrix
multiplication, however, it is not necessary to keep the whole virtual address
segment within the cache, but rather only a small environment around the
current position within the matrix. Due to this, the algorithm does not suffer

304 M. Schulz

in performance when applied to data sizes larger than the L2 cache. It even
benefits from the reduced overhead due to the larger data size, resulting in a
higher speed–up.

17.6.3 Results for the Volume Rendering Code

While the experiments using the small numerical kernels provide detailed
information about the raw performance and the problems of the SCI-VM and
the SPMD model implementation, it is also necessary to perform experiments
using complex applications to evaluate the full impact of the SCI-VM. For
this purpose we utilized a volume rendering code from the SPLASH-II suite
[35]. It was ported to the SPMD programming model by providing an adapted
version of the ANL macros1. The actual volume rendering code itself was not
modified.

To evaluate this application, the same experiments were conducted as
described above for the numerical kernels. The results are summarized in
Table 17.2. The values correspond to rendering times of single images. Pre-
and post-processing of the data was not included in the measurements. The
data set used for all experiments is the standard test case provided together
with the SPLASH distribution and has a raw size of roughly 7 MByte. The
work sharing granularity is set to blocks of 50x50 pixels to achieve the optimal
tradeoff between management overhead and load balancing.

Sequential execution (local memory) 3522 ms
Sequential execution (global memory) 4136 ms
Parallel execution (global memory) 2381 ms
Speed–up 1.48
Overhead 17.43 %

Table 17.2. Performance results for the volume rendering application

This complex application which handles large data sets also exhibits a
good performance on top of the transparent virtual address space. It is possi-
ble to achieve a speed–up of about 1.5 due to a low overhead caused by utili-
zing the transparent memory, of only about 18 %. Most of the overhead pro-
hibiting a larger speed–up is caused by the management and locking overhead
of a central work queue which is a common bottleneck in any shared memory
environment. This experiment shows that the concepts presented in this pa-
per can be directly and efficiently applied to a large existing shared memory
1 The ANL macro package provides the basic shared memory constructs to the

SPLASH applications in a platform–independent way. A dummy version for
single processor systems and a sample version for SGI systems are provided with
the SPLASH distribution [31]. Unfortunately, there is no further documentation
available.

17. True Shared Memory Programming on SCI-based Clusters 305

code without a major porting effort. Future experiments will extend this to
further applications from different domains and will evaluate the SCI-VM in
a variety of scenarios.

17.7 Using the SCI-VM for Transparent Multithreading

Besides the first implemented programming model on top of the SCI-VM, the
SPMD model described in Section 17.5, several others with different capa-
bilities and target domains are possible. One of the most interesting option
is the implementation of a fully transparent, distributed thread library on
top of the SCI-VM (see also [27]). The advantages and problems of such a
model are described in this section. The concept presented here is currently
being implemented within the ESPRIT project SISCI [7, 29] using the thread
interface defined in the POSIX standard [33] and the thread interface defined
by Microsoft’s Win32 API [21]. The result will be a completely transparent
thread library, the SISCI–Pthreads/Win32Threads, which establishes a true
SMP environment on top of an SCI cluster in a fully transparent fashion.
This will ease the port of existing multithreaded applications onto clusters
and therefore open this architecture to a whole group of new applications.

17.7.1 Transparent Thread Distribution

The basis for the implementation of these thread libraries is the global vir-
tual memory provided by the SCI-VM. It creates a consistent view onto the
complete virtual memory from any node within the system and guarantees
that any data is available on any node using the same address.

On top of this global memory abstraction, the global thread abstraction
can be built. This thread abstraction has to be capable of creating and ter-
minating remote threads and of modifying attributes of any thread in the
system from any node. These functions will be implemented using a forwar-
ding mechanism which forwards thread function calls to the team process
hosting the thread in a remote method invocation–style manner. The only
exception to this is the thread creation routine. Here a target node for the new
thread has to be selected prior to the forwarding of the request. Currently
this is done using a round–robin scheme to create an even thread distribution
suitable for our homogeneous cluster environment. This, however, can easily
be adapted to a more flexible and adaptive scheme which takes factors like
load, interactive usage, and processing speed of the nodes into account.

A special problem in a distributed thread system is the program or pro-
cess termination mechanism. Both POSIX and Win32 define that a process
is terminated when its last thread terminates. This semantics has to be ex-
tended to the distributed thread implementation. This can be achieved by
maintaining a global active–thread counter. When this counter reaches zero,

306 M. Schulz

all other nodes are notified and the team processes terminate themselves. In
addition, team processes have to kept alive, even after their last local thread
has terminated, as threads on other nodes may still be active and/or there
may be future requests to spawn a new thread on the local node. This is im-
plicitly achieved by maintaining an additional thread per team process that is
not part of the application threads. This does not cause any extra overhead,
as such a thread is already required to handle the communication with the
other team processes.

17.7.2 Synchronization Mechanisms

The POSIX thread API, as defined in [33], and the Win32 API, as defined in
[21], include a variety of concepts that can be utilized to synchronize the exe-
cution of concurrent threads. The three main mechanisms are mutexes (both
APIs), condition variables (POSIX) and events (Win32). The first mecha-
nism can be used to guarantee mutual exclusion for the execution of critical
sections, while the other two allow to signal events to other waiting threads.
Similar to the SPMD programming model, these synchronization mechanisms
can also be implemented using the SCI atomic transactions. In contrast to
the SPMD model with one thread per node, however, a simple notification
mechanism purely based on polling is not advantageous in a fully multithrea-
ded environment; as there can be multiple threads per processor, a polling
thread can seriously hurt the performance of the other threads. The notifica-
tion mechanism, therefore, needs to be enhanced to cope with this problem,
i.e., trading off the responsiveness of the waiting thread and the overall per-
formance of the system. Possible solutions for this problem can range from
exponential back-off mechanisms to remote interrupts. Future research will
show the best performing solution for this special environment.

17.7.3 Applying a Relaxed Consistency Model

Special care has to be taken to incorporate the relaxed memory consistency
model provided by the SCI-VM. As discussed in Section 17.2 and as seen
in the results of the first experiments in Section 17.6, this is a necessary
prerequisite to enable applications to run with an acceptable performance.
The utilization of such a relaxed consistency model, on the other hand, has
the severe side effect of changing the memory semantics for the applications.

In order to maintain full transparency in such a system, coherency en-
forcing constructs have to be applied rigidly which automatically provide a
coherent memory state whenever the application might require it.

This endeavor is eased by the fact that the POSIX standard [33] already
includes a relaxed memory coherence model. By mapping this relaxed consi-
stency model onto the model provided by the SCI-VM, a POSIX–compliant,
transparent shared memory is achieved. Therefore, all applications which are

17. True Shared Memory Programming on SCI-based Clusters 307

cleanly written according to the POSIX standard will run transparently on
top of the SISCI–Pthreads.

The POSIX consistency model is based on so–called synchronization
points. These points are routines within the POSIX interface which have
to enforce a fully consistent memory before their return. A complete list of
these routines can be found in [33]. It mainly includes routines that deal
with thread synchronization like mutex lock and unlock routines. These rou-
tines, which are implemented within the SISCI–Pthreads library, implicitly
enforce this synchronization through the primitives provided by the SCI-VM.
Although this approach does not offer the optimal solution with regard to
performance, it guarantees a fully transparent execution of multithreaded
codes on top of SCI.

17.8 Related Work

Work on shared memory models for clusters of PCs is mostly done in the area
of pure software DSM systems. A well–known representative of this group is
the TreadMarks [2] implementation. Here, shared pages are replicated across
the cluster and synchronized with the help of a complex multiple-writers
protocol. To minimize the cost of maintaining the memory consistency, a
relaxed consistency model is applied, the Lazy Release Consistency [1, 15].
However, unlike in the SCI-VM approach, where the sharing of the memory
is transparently embedded into a global abstraction of a process, TreadMarks
requires the programmer to explicitly allocate either local or global segments.
The same also holds for any other currently existing software DSM package,
although they vary with respect to their APIs, consistency models, and usage
focus. Examples of those kind of systems that have been developed for the
same platform as the SCI Virtual Memory – Windows NT – are Millipede
[13], Brazos [30], and the SVMlib [25].

Besides these pure software DSM systems that just deal with providing a
global memory abstraction on a cluster of workstations, there are also projects
that provide an execution model in the form of a thread library on top of the
constructed global memory. One example for this are the DSM-Threads [23],
which are based on a POSIX 1003.1c conforming API. This thread package,
based on the FSU-Pthreads [22], allows the distribution of threads across a
cluster interconnected by conventional interconnection networks. However, it
also does not provide complete transparency. It therefore forces the user to
modify and partly rewrite the application’s source code.

Only a few projects utilize techniques similar to the SCI Virtual Memory
and try to deploy SCI’s hardware DSM capabilities directly. In the SciOS
project (Chapter 18 and [16]), a global memory abstraction is created using
SCI’s DSM capabilities to implement fast swapping to remote memory. Rese-
archers at the University of California at Santa Barbara are also working on
providing a transparent global address space with the help of SCI (Chapter

308 M. Schulz

15 and [9, 10]). Their approach, however, does not target a pure API, but
rather is a hybrid approach of shared memory and message passing in the
context of a runtime system for Split-C.

This work is in principle also applicable to any other non-cache-coherent
NUMA architecture. One widely known commercial representative of this
type of machine is Cray/SGI’s T3D/E [17]. Also on this machine efficient
low–level message passing, e.g., in the form of Fast Messages [26], and shared
memory programming in the form of a restricted put and get functionality
is available. However, no global virtual memory system like the SCI-VM
presented above is provided. Other well known work for NUMA systems in
academia can be found at Princeton University in the Shrimp project [4] and
at the University of Rochester in the Cashmere project [32].

17.9 Conclusions and Future Work

Clusters of commodity PCs have traditionally been exploited using appli-
cations built according to the message passing paradigm. Shared memory
programming models, which are generally regarded as easier and closer to se-
quential programming, are only available through software DSM systems.
Currently, however, these systems lack performance and/or transparency.
With the help of the SCI Virtual Memory presented in this chapter, it is
now possible to create a fully transparent global virtual address space across
multiple nodes and OS instances. This is achieved by combining hardware
DSM mechanisms for physical memory with page–based techniques from tra-
ditional software DSM systems to provide the participating processes on the
cluster nodes with an identical view onto the distributed memory resources.

The global virtual address space provided by the SCI-VM can then be used
as a basis for implementing various kinds of shared memory programming
models. Each of these models represents a tradeoff between full transparency
with greatest possible convenience for the programmer and full control for
optimum performance. This tradeoff has to be carefully chosen according to
the needs of the programmer and the target application domain.

Two examples of such programming models based on the SCI-VM have
been presented here: an SPMD–style model and a transparent thread library
based on the POSIX/Win32 thread standard. The SPMD model provides
the programmer with an easy to use parallel programming model that allows
the execution of parallel applications on top of a global virtual memory in a
synchronous manner. First results with several small numerical kernels and
one larger volume rendering application show good performance results and
prove the feasibility and applicability of the presented concepts. The latter
model, which is currently being implemented, will allow the fully transparent
execution of SMP applications on top of clusters of PCs. It is intended to
function as a bridge between tightly coupled systems like SMPs and loosely

17. True Shared Memory Programming on SCI-based Clusters 309

coupled clusters allowing for easy porting of thread based codes onto SCI–
based cluster architectures.

In summary, the SCI-VM is the key component to open the cluster archi-
tecture to the shared memory programming paradigm which has been tradi-
tionally the domain of tightly coupled parallel systems like SMPs. Together
with appropriate programming models atop, it will ease the programmability
of clusters and allow to utilize the large number of existing shared memory
codes directly in cluster environments.

Acknowledgments

This work is supported by the European Commission in the Fourth Frame-
work Programme under ESPRIT HPCN Project EP23174 (Standard Soft-
ware Infrastructure for SCI based Parallel Systems – SISCI). The SCI device
driver source code has been kindly provided by Dolphin ICS. The driver
software to augment the Windows NT memory management has been im-
plemented by Detlef Fliegl (LRR–TUM, TU München). Last but not least,
I would like to thank my wife Laura for proofreading and her support in
general.

References

1. S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
Rice University ECE Technical Report 9512 and Western Research Laboratory
Research Report 95/7, Department of Electrical and Computer Engineering,
Rice University, and Western Research Laboratory, DEC, Sept. 1995.

2. C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of
Workstations. IEEE Computer, Feb. 1995.

3. A. Bengelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A User’ s
Guide to PVM Parallel Virtual Machine. Oak Ridge National Laboratory, Oak
Ridge, TN, July 1991.

4. M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg.
Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer.
In Proc. 21st Int’l. Symposium on Computer Architecture, volume 22 of CAN,
pages 142–153, ACM, Apr. 1994.

5. H. Custer. Inside Windows NT. Microsoft Press, 1992.
6. Dolphin Interconnect Solutions, AS. PCI–SCI Cluster Adapter Specification,

Version 1.2, May 1996.
7. M. Eberl, H. Hellwagner, B. Herland, and M. Schulz. SISCI — Implemen-

ting a Standard Software Infrastructure on an SCI Cluster. In W. Rehm, edi-
tor, Tagungsband zum 1. Workshop Cluster Computing, number CSR-97-05 in
Chemnitzer Informatik–Berichte, pages 49–61, Nov. 1997.

8. M. Eberl, H. Hellwagner, W. Karl, M. Leberecht, and J. Weidendorfer. Fast
Communication Libraries on an SCI Cluster. In Proc. SCI-Europe ’98, a con-
ference stream of EMMSEC ’98, pages 165–175, Sept. 1998.

310 M. Schulz

9. M. Ibel, K. Schauser, C. Scheiman, and M. Weis. Implementing Active Messages
and Split-C for SCI Clusters and Some Architectural Implications. In Proc. 6th
International Workshop on SCI-based Low-cost/High-performance Computing,
SCIzzL, Sept. 1996.

10. M. Ibel, K. Schauser, C. Scheiman, and M. Weis. High-Performance Cluster
Computing Using SCI. In Proc. Hot Interconnects V, Aug. 1997.

11. IEEE Computer Society. IEEE Std 1596–1992: IEEE Standard for Scalable
Coherent Interface. The Institute of Electrical and Electronics Engineers, Inc.,
New York, NY, USA, August 1993.

12. Intel Corporation. Intel Architecture Software Developer’s Manual for the Pen-
tiumII, volumes 1–3. Published on Intel’s Developer Website, 1998.

13. A. Itzkovitz, A. Schuster, and L. Shalev. Millipede: a User-Level NT-Based
Distributed Shared Memory System with Thread Migration and Dynamic Run-
Time Optimization of Memory References. In Proc. 1st USENIX Windows NT
Workshop, Aug. 1997.

14. W. Karl, M. Leberecht, and M. Schulz. Supporting Shared Memory and Mes-
sage Passing on Clusters of PCs with a SMiLE. In A. Sivasubramaniam and
M. Lauria, editors, Proc. CANPC’99, LNCS 1602. Springer Verlag, 1999.

15. P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD
thesis, Rice University, Jan. 1995.

16. P. Koch, E. Cecchet, and X. de Pina. Global Management of Coherent Shared
Memory on an SCI Cluster. In Proc. SCI-Europe ’98, a conference stream of
EMMSEC ’98, pages 51–57, Sept. 1998.

17. R. Koeninger, M. Furtney, and M. Walker. A Shared Memory MPP from Cray
Research. Digital Technical Journal, 6(2), 1994.
http://www.digital.com/info/DTJE01/DTJE01SC.TXT.

18. H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Message Passing Versus
Distributed Shared Memory on Networks of Workstations. In Proc. Supercom-
puting ’95, Dec. 1995.

19. M. Schulz and H. Hellwagner. Extending NT Virtual Memory by SCI–based
Hardware DSM. In Proc. 2nd USENIX Windows NT Symposium, Aug. 1998.

20. Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface
Standard. Technical Report, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org.

21. Microsoft Corporation. Microsoft Platform Software Development Kit, chapter
About Processes and Threads. Microsoft, 1997.

22. F. Müller. A Library Implementation of POSIX Threads under UNIX. In Proc.
USENIX, pages 29–42, Jan. 1993.

23. F. Müller. Distributed Shared Memory Threads: DSM–Threads, Description
of Work in Progress. In Proc. Workshop on Run–Time Systems for Parallel
Programming, pages 31–40, Apr. 1997.

24. B. Nitzberg and V. LO. Distributed Shared Memory: A Survey of Issues and
Algorithms. IEEE Computer, pages 52–59, Aug. 1991.

25. S. Paas, M. Dormanns, T. Bemmerl, K. Scholtyssik, and S. Lankes. Computing
on a Cluster of PCs: Project Overview and Early Experiences. In W. Rehm,
editor, Tagungsband zum 1. Workshop Cluster Computing, number CSR-97-05
in Chemnitzer Informatik–Berichte, pages 217–229, Nov. 1997.

26. S. Pakin, V. Karamcheti, and A. Chien. Fast Messages (FM): Efficient, Portable
Communication for Workstation Clusters and Massively-Parallel Processors.
IEEE Concurrency, 5(2), 1997.

27. M. Schulz. SISCI-Pthreads, SMP–like programming on an SCI–cluster. In
Proc. HPCN Europe ’98, Apr. 1998.

17. True Shared Memory Programming on SCI-based Clusters 311

28. M. Schulz and H. Hellwagner. Global Virtual Memory based on SCI-DSM. In
Proc. SCI-Europe ’98, a conference stream of EMMSEC ’98, pages 59–67, Sept.
1998.

29. SISCI Consortium. Standard Software Infrastructure for SCI-based Parallel
Systems (SISCI). http://www.parallab.uib.no/projects/sisci/, Aug. 1997.

30. E. Speight and J. Bennett. Brazos: A Third Generation DSM System. In Proc.
1st USENIX Windows NT Workshop, Aug. 1997.

31. SPLASH Research Group at Stanford. SPLASH distribution.
ftp://www-flash.stanford.edu/pub/splash2/, Nov. 1996.

32. R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Part-
hasarathy, and M. Scott. CASHMERE-2L: Software Coherent Shared Memory
on a Clustered Remote-Write Network. In Proc. SOSP’97, Oct. 1997.

33. Technical Committee on Operating Systems and Application Environments of
the IEEE. Portable Operating Systems Interface (POSIX) — Part 1: System
Application Interface (API). ANSI/IEEE Std. 1003.1. IEEE, 1995 edition,
1996.

34. T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages:
a Mechanism for Integrated Communication and Computation. In Proc. 19th
Int’l. Symposium on Computer Architecture, May 1992.

35. S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH–2 Pro-
grams: Characterization and Methodological Considerations. In Proc. 22nd
Int’l. Symposium on Computer Architecture, pages 24–36, June 1995.

18. Implementing a File System Interface to
SCI

P.T. Koch1, J.S. Hansen1, E. Cecchet2, X. Rousset de Pina2

1 Department of Computer Science, University of Copenhagen, Denmark
email: {koch, cyller}@diku.dk
http://www.diku.dk/distlab

2 SIRAC Laboratory, INRIA Rhône-Alpes, France
email: {Emmanuel.Cecchet, Xavier.Rousset}@inrialpes.fr
http://www.inrialpes.fr/

18.1 Introduction

This chapter deals with the issues in implementing a file system interface to
the shared memory in an SCI cluster. We describe the possibilities of sha-
ring in file systems and how it can be implemented for SCI in UNIX systems
and Windows NT. We present our prototype, SciOS, which implements a
memory-based distributed file system. We find that the file system interface
integrates SCI well with the operating system and provides sharing mecha-
nisms, a symbolic name space, and possibilities for protection on multi-user
SCI clusters.

18.1.1 Motivation

SCI can be implemented as a normal device driver (see Chapter 9). This
requires a minimum amount of code that can be ported to a wide range
of operating systems. The programming interface consists of device control
commands, e.g., ioctl calls to allocate and map remote memory, which are
defined by the driver. Libraries can implement more easy-to-use interfaces on
top of the device driver.

An alternative way is to implement SCI as a network driver. Applications
can then use standard message-passing interfaces and protocols to communi-
cate over SCI (see Chapter 12). This allows existing distributed applications
written for message-passing to benefit from the high performance of SCI.

Physical memory can be given a disk driver interface and implement a
RAM disk. Access to physical memory is much faster than to a disk and is
thus well-suited for temporary files that do not need to be persistent. But it is
inflexible because it occupies a large, fixed amount of physical memory which
can result in poor utilization of system resources. A system like Memory File
System [14] is integrated with the virtual memory system of the kernel which
makes it more flexible in its use of physical memory. The memory-based file
system approach can also be taken for SCI clusters which can implement
distributed file systems based on cluster-wide shared physical memory.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 313-331, 1999
© Springer-Verlag Berlin Heidelberg 1999

314 P. T. Koch et al.

18.1.2 SCI-based File Systems

Using a file system interface to the physical memory in an SCI cluster has
a number of advantages. The definitions of file system interfaces are tradi-
tionally stable and have developed incrementally and with backward compa-
tibility. The programming interface and tools are well understood by users,
at least for non-distributed file systems. A file system provides mechanisms
for the sharing of data, a flexible naming scheme with symbolic names, and
control of resource utilization. The protection mechanisms provided in file
systems are important on large, multi-user SCI clusters.

The traditional use of memory-based file systems is for temporary files
that do not need to be persistent and survive system crashes. Because the
files are kept in memory only, such file systems easily outperform normal file
systems. Even if normal file systems do extensive caching of a file’s contents
in main memory, some of the file attributes must be stored on stable stor-
age, thereby slowing down file creation and deletion. An example of a use
of temporary files is a compiler which saves intermediate files between com-
pilation phases. For an SCI-based file system, the use of non-persistent files
goes beyond such temporary files that are accessed sequentially by different
processes.

Typically, SCI clusters are used for parallel applications which can use
shared files for holding matrices and other data structures that are accessed
concurrently by multiple nodes in the cluster. Sharing may occur at a very
fine granularity and consistency guarantees must be given for the application
to produce correct results. The size of the data sets used in scientific appli-
cations may be much bigger than the physical memory and swap space that
is available in a single node. With SCI, a memory-based file can be held in
physical memory of multiple nodes and shared through the SCI hardware.
Having a file interface to SCI allows easy post- and pre-processing of shared
data with general tools such as awk , perl , Tcl , and editors. A file system pro-
vides only a low-level interface. More elaborate environments for developing
and executing distributed and parallel applications are still needed for SCI.

18.1.3 Outline

Section 18.2 introduces and discusses sharing in file systems and Section 18.3
describes how to add a new file system to the UNIX and Windows NT ope-
rating systems along with the main issues for implementing a file system
interface to SCI. Section 18.4 gives an example of our prototype, SciOS,
which uses a file system interface to implement a shared virtual memory on
a cluster of workstations running Linux and using Dolphin’s SCI cluster ad-
apters. Section 18.5 presents related work, and Section 18.6 summarizes our
findings and conclusions.

18. Implementing A File System Interface to SCI 315

18.2 Sharing in File Systems

Especially multi-user and distributed file systems have to deal with issues
of file sharing. We now briefly discuss the topic of sharing in file systems in
UNIX variants and Windows NT.

When multiple processes share a file with explicit I/O calls such as read
and write, each process has to read in the shared data into local buffers. Mo-
difications can only be made to the local buffer and they have to be explicitly
written back to the file before other processes can see the modifications. The
resulting delay can complicate sharing and it may incur serious overheads
from a large amount of system calls and copying between user and kernel
space. Memory mapping of files solves these problems for non-distributed
systems.

18.2.1 Memory-Mapped Files

Memory-mapping of a file allows a process to access the content of a file
directly in memory through normal load and store instructions. The opera-
ting system assures that the file’s content is available in physical memory
and allows multiple processes to map the content through virtual-to-physical
mappings. This means that modifications made by one process become imme-
diately visible to the other processes without explicit system calls or copying.
An example showing two processes mapping the same file in UNIX is shown
in Figure 18.1. Windows NT has the same functionality.

Memory-mapped files can be used to directly access remote physical me-
mory in an SCI cluster. Direct access to remote memory may not have the
same semantics as the access to local physical memory. This is discussed in
more detail in Section 18.2.3 and Section 18.3.6.

memory
physical

virtual
address
space

Process A

virtual
address
space

in memory

Process B

process address
space

file mapping in

disk

on disk
file data

file memory
mapping

Legend:
file data

Fig. 18.1. Example with two processes mapping the same file in physical memory.

316 P. T. Koch et al.

18.2.2 UNIX Example with a Memory-Mapped File

We illustrate memory-mapped files with an example in UNIX. A process
creates and opens a file with the name /scios/test/example as shown in
Figure 18.2. The file is created in such a way that the user has read and
write permissions and the group has read permission only. The name space is
shared and the open call initializes the file descriptor fd. The file is mapped
into the virtual address space with the mmap call and is then initialized with
the function init table. The function is unaware that it is initializing a file
and it can access the elements of table in a random order.

fd = open("/scios/test/example", O RDWR|O CREAT,
S IRUSR|S IWUSR|S IRGRP);

table = mmap(0, 2048 * sizeof(*table), PROT READ|PROT WRITE,
MAP SHARED, fd, 0);

init table(table); /* initialize 2048 elements */

Fig. 18.2. A process creates, maps and initializes the file /scios/test/example.

Another process opens the file /scios/test/example, maps it and prints
its contents (see Figure 18.3).

fd = open("/scios/test/example", O RDONLY);

table = mmap(0, 2048 * sizeof(*table), PROT READ, MAP SHARED, fd, 0);

for (i = 0; i < 2048; i++)
printf("%d\n", table[i]);

Fig. 18.3. A process opens, maps and reads an existing file /scios/test/example.

In the above example, the file is mapped at a virtual address determined
by the operating system and this address may be different in all the processes
that map the file. If the file needs to be mapped at a fixed virtual address,
e.g., when the file contains virtual addresses, the process can give a virtual
address to the mmap call and specify MAP FIXED. A process may map the file
multiple times and only parts of it specified by an offset and a length to the
map call.

18.2.3 File Consistency

The normal consistency semantics for a UNIX file is that modifications are
immediately visible to other processes accessing the file. It is known as UNIX
semantics. This can easily be implemented on non-distributed systems, be-
cause the kernel can use the same kernel disk buffers for all processes and the

18. Implementing A File System Interface to SCI 317

same physical memory for memory-mapped files. In distributed file systems,
a number of performance optimizations are needed to avoid bottlenecks in
the file servers or excessive communication. Client nodes may cache or repli-
cate whole files or disk blocks to enhance locality and reliability. Clients may
also delay sending modifications to the file server to reduce network traffic.
Some distributed file systems often only provide session semantics where the
modifications to a file are not visible on other nodes until the file is closed and
subsequently opened on another node. There may also be inconsistency if the
file is memory-mapped on multiple nodes, or if it is accessed simultaneously
through a memory map and read/write calls.

An SCI-based file system must provide much stronger guarantees than ses-
sion semantics. Parallel applications often expect memory consistency models
known from shared-memory multiprocessors [4]. These range from sequential
consistency (like UNIX semantics) to models where remote load and store
instructions may be reordered until certain synchronization points have been
reached in the application. The implementation of file consistency for SCI
clusters is highly dependent on the capabilities of the SCI hardware, espe-
cially for remotely mapped memory. This is discussed further for the SciOS
prototype in Section 18.4.

18.2.4 Synchronization

Synchronization is an area where the file system interface is not well suited for
an SCI-based file system. The basic synchronization mechanism supported by
non-distributed file systems is locking. In both UNIX variants and Windows
NT, either a whole file or just a specified byte range may be locked. Usually
both read and write locks are available. Both mandatory and advisory locking
can be used. When mandatory locking is used, all operations that potentially
can violate a lock must check for conflicts. One exception is the use of memory
mapped files where locks are not enforced on memory operations due to the
lack of efficient byte-range protection in the memory management system.
For distributed file systems, file synchronization is complicated. File systems
based on stateless servers, e.g., NFS, do not hold states for each open file, and
can therefore not support distributed locking mechanisms. With NFS, this is
solved by using a separate synchronization service. For parallel applications
using an SCI-based file system, a wide range of synchronization primitives
is needed. At least primitives like locks, condition variables, and barriers are
expected by most parallel applications.

18.3 Issues for Implementing SCI-based File Systems

Modern operating systems allow several file system implementations to co-
exist. A file system can be added in a modular way, and the operating systems

318 P. T. Koch et al.

provide a single interface, e.g., file operations, naming, and access control, to
all of them. In UNIX systems, the most widespread file system framework is
the virtual file system (VFS) which was originally designed by Sun [11] for the
Network File System and it was later adopted by System V UNIX in SVR4 [6].
The VFS interface has evolved considerably and different UNIX systems pro-
vide extensions to the VFS interface, e.g., 4.4BSD and OSF/1. Non-UNIX
operating systems also provide a file system framework, e.g., Windows NT
which provides Installable File Systems and File System Drivers [15].

In the following, we examine the structure of the VFS interface in Linux
2.0 and UNIX System V Release 4 (SVR4) together with the Windows NT
file system drivers. We refer to all the virtual file system frameworks as VFS
and the UNIX implementations as vnode/vfs. We consider how an SCI-based
file system can be implemented in these systems.

18.3.1 A Virtual File System

The primary role of a VFS is to link a number of different file systems together
in a single name space, to provide a representation for objects residing on
the file system, e.g., files and directories, and to convert the invocation of
the system calls into operations on a particular file system. The separation
between the system calls and the file system implementation is achieved by
introducing a level of indirection. In vnode/vfs, this is called the vnode layer ,
and in Windows NT, it is handled by the I/O Manager.

The VFS maintains a file system independent representation of mounted
file systems and their objects such as files and directories. In a vnode/vfs
system, file system objects are represented by virtual nodes, vnodes, and in
Windows NT, they are represented by special objects. Selected fields from
a vnode data structure are listed in Table 18.1. The v op field is a pointer
to a list of operations which each file system can implement for directories
and files, e.g., lookup, open, read, and write which are discussed in Sec-
tion 18.3.4.

v count Reference count.
v vfsmountedhere Covering file system.
v op Pointer to vnode operations.
v vfsp Pointer to the file system of the vnode.
v type Vnode type.
v data Pointer to file system dependent data (an inode).

Table 18.1. Selected fields in a vnode data structure.

18. Implementing A File System Interface to SCI 319

18.3.2 Files and Directories

UNIX systems and Windows NT use a hierarchical name space. A new file
system can be made part of the global name space by mounting it to a
directory—the mount point—in the existing name space. The directory of
the original file system is then hidden and is changed to refer to the root
directory of the new file system. Each file system has general information
for describing a file system. In UNIX, it is maintained in a superblock data
structure and Windows NT maintains a volume device object.

In Windows NT, it is the responsibility of the file system implementation
to parse any pathname for a file, e.g., /scios/test/example/. In vnode/vfs,
the vnode layer uses the VFS operation lookup to obtain a new vnode given
a directory vnode and a symbolic name. Originally, the lookup operation only
resolved one level of a file path name at a time. In distributed file systems
this can result in considerable overhead, as each lookup is resolved across the
network. In recent VFS implementations, such as 4.4BSD, multiple levels can
be resolved at a time.

In vnode/vfs, the file system dependent state information of a file is often
referred to as an index node or an inode. An inode contains status information
and the data disk block numbers of the file. It is referenced from a vnode (see
the field v data in Table 18.1). In most file systems, a directory is a regular
file containing a list of names and inode references (e.g., a pointer, a disk
block number) for the files contained in the directory.

In Windows NT, the file structure and terminology is slightly different,
but the basic representation is the same. The I/O Manager maintains a file
object for each reference to an open file, and the file system implementation
maintains a File Control Block for each open file which contains both file
system independent and file system dependent information. This corresponds
to a combination of vnode and inode information in vnode/vfs.

18.3.3 Example of Vnode/vfs Data Structures

In an SCI-based file system, the inodes and data pages should be placed in
shared memory giving all nodes easy access to both file system structure and
data. To keep the file system consistent the nodes must synchronize access to
both inodes and data pages, e.g., if two processes add different entries to the
same directory both the file size in the inode and the data pages must be up-
dated atomically for each entry. Figure 18.4 shows the data structures resul-
ting from simultaneously opening the SCI-based file /scios/test/example
by two processes as shown in Figures 18.2 and 18.3. The two directory files,
/scios and /test, and their vnodes are the result of the name resolution
through one or more lookup operations. Inodes keep track of the location of
the physical memory that makes up, e.g., the file example. For small files, a
number of physical pages are reached directly from an inode. Larger files will
require indirect inodes—like page tables in virtual memory systems.

320 P. T. Koch et al.

reference

file name
directory orname

Shared memory
inode for (SCI-based file system)inode for

Legend:

inode for
exampletest/scios/

example

data page
with data for

example

data page
with data for

vnode for vnode for
scios/ test/

vnode for
example

directory file
containing
test/

directory file
containing
example

process file
information

examplefor

process file
information

examplefor

Kernel space

Fig. 18.4. Data structures for the open SCI-based file /scios/test/example.

18.3.4 Virtual File System Operations

For a new file system using a VFS interface, a number of operations need to
be implemented. The operations are called by the VFS in response to system
calls and other events in the operating system. There are operations on the
file systems itself, e.g., mount and unmount, and operations on individual files,
e.g., open, read, and write.

In vnode/vfs, the operations on directories and files are called directly
through a vnode’s v op field (see Table 18.1). The most relevant operations
are summarized in Table 18.2. Each kernel has its private file system inde-
pendent data structures for the file, e.g., vnodes in vnode/vfs in the example
in Figure 18.4.

When a process maps a file in memory, the mmap operation is called with
the virtual address range of the new memory map. For a memory-mapped
file, the getpage operation is called on a page fault and the putpage is
called when flushing a dirty page. In addition the file system may use virtual
memory operations (see Section 18.3.5) instead.

File access is verified through the access operation, and the file attribu-
tes are manipulated through the getattr and setattr operations. For an
SCI-based file system conventional access control can be used, as SCI-based
systems are usually tightly coupled and have the same set of users on each
node.

In Windows NT, the I/O Manager communicates with the file system
using I/O Request Packets. Such request packets include a command which
is used to invoke a specific function in the file system. The Windows NT
interface has fewer functions than vnode/vfs, but uses parameters more ex-

18. Implementing A File System Interface to SCI 321

open/create/close Open/create/close a file.
link/remove Create/remove link to file.
read/write Read/write data from/to a file.
getattr/setattr Get/set attributes for a file.
access Check access permissions for a file.
ioctl Control operations.
lookup Resolve name in directory to vnode.
mkdir/rmdir Create/remove a directory.
mmap Map a file into a process.
getpage/putpage Read/write a page for a memory-mapped file.

Table 18.2. Selected vnode operations. The naming and semantics of the operati-
ons vary slightly between the different vnode/vfs implementations.

tensively, e.g., the IRP MJ CREATE command handles both open, create, and
mkdir operations.

18.3.5 Interaction with the Virtual Memory System

Most file system implementations also need to access low-level kernel func-
tions such as the virtual memory system, especially for memory-mapped files.
The getpage/putpage in the VFS interface (see Section 18.3.4) does not give
complete control of when physical memory is allocated and more advanced
operations can be specified for virtual memory ranges.

Table 18.3 shows selected virtual memory operations for Linux. Similar
operations exist for memory segments in SVR4. Page faults for pages with no
virtual-to-physical mapping are handled by the nopage operation and swap
operations handled by the swapin and swapout operations. The creation and
manipulation of memory mapped files in Windows NT is not visible to the file
system implementation. The virtual memory system maintains a Prototype
Page Table (PPT) data structure for each mapped file. The PTT is created
when a file is mapped and subsequent mappings of the same file reuse the
existing PTT without involving the file system.

unmap Unmap a range of pages from the address space.
protect Change virtual memory protections on a range of pages.
sync Write modified pages back to swap file or mapped file.
nopage Handle page fault for a page with no mapping.
wppage Handle write to a read protected page.
swapout/swapin Place/fetch a page on secondary storage.

Table 18.3. Selected virtual memory operations for Linux.

For SCI-based file systems, additional virtual memory support is needed
to manage mappings of remote memory through the I/O bus. One case that

322 P. T. Koch et al.

needs to be handled is when a page is swapped out. Then all nodes that map
the page remotely must invalidate their mappings so further accesses will
result in page faults which can swap the page back in. This requires that the
file system knows which processes on which nodes map the pages at which
virtual addresses. In Windows NT, this information is not readily available.

18.3.6 Remote Memory Mappings and File Consistency

When multiple processes map a file on the same node, they share the same
physical memory and they access the memory with the consistency guarantees
of the local memory system. When a process maps a file on a remote node in
an SCI-based file system, the load and store operations pass by the I/O bus
and the SCI interconnect.

On current 32-bit I/O busses, the amount of address space available for
remote memory mappings on a node is far from enough to map all the physical
memory for the files in an SCI cluster. If multiple processes on the same node
map the same remote page of a file, they can share the remote mapping in the
SCI cluster adapter. But the file system has to deal with the case when all the
available remote mappings have already been used. A solution is to manage
the remote mappings as the operating system manages the TLB for virtual-
to-physical memory mappings. To make room for a new remote mapping,
an existing remote mapping can be invalidated and the virtual-to-physical
mappings in processes that use that remote mapping have to be invalidated.

Most SCI clusters have weaker consistency models for remote memory
accesses than for local accesses. For example, in a cluster with Dolphin’s PCI-
SCI adapters (see Chapter 3), writes to remote memory may be reordered.
So when a process accesses a remote file, special flush operations are needed
to make sure that writes have been performed in a remote memory. Also, if
the local cache or prefetching is enabled to improve performance, old values
must be flushed into the local cache or the PCI-SCI adapter when accessing
memory that has been modified on another node. The solution is to specify
a consistency model that is weak enough to deal with the consistency pro-
perties of the SCI cluster. One possibility is to specify release consistency [4]
which allows writes to shared memory to be reordered, but requires that all
accesses to shared memory are correctly synchronized. The file system must
then provide synchronization primitives that deal with the correct flushing of
caches and buffers in the SCI adapters to fulfill the consistency guarantees.

18.3.7 Synchronization

The amount of support for synchronization varies greatly between the dif-
ferent VFS implementations. In systems like SVR4 and Windows NT, the
locking operations are visible to a VFS based file system, but in Linux, the
locking mechanism is implemented directly in the VFS layer, and is therefore

18. Implementing A File System Interface to SCI 323

not visible to the file system implementation. Although byte-range locks can
be used by an SCI-based file system to provide locking of memory objects, this
is typically not implemented for memory-mapped files. Furthermore, locks are
not sufficient for parallel applications, which need more specialized primitives
like condition variables and barriers. For these primitives, the ioctl control
operation can be used to implement the required primitives which can be
integrated with the shared memory consistency model.

18.4 The SciOS Prototype

The SciOS prototype implements a distributed shared virtual memory sy-
stem on an SCI cluster. The prototype has a file system interface. SciOS
currently runs on cluster of Intel PCs with Linux 2.0 and Dolphin’s PCI-SCI
Rev. D adapters. In this environment, the difference between local and re-
mote memory accesses is high and SciOS provides mechanisms for automatic
migration, replication, and remote swap to enhance locality of accesses to
shared pages. SciOS is implemented as a kernel module with interfaces to the
VFS facility.

18.4.1 SciOS Memory Protocols

In SciOS, an application can request different memory protocols depending on
the sharing pattern for a given file. The protocols range from a simple, fixed
allocation of pages on a single node to a complex global memory management
protocol. A protocol is selected with a file control call (ioctl). The different
protocols are:

FIXED INIT: Physical pages are always allocated on the node that has crea-
ted the file. As remote writes have a lower latency than remote reads (see
Chapter 3) the implementation of message passing interfaces and applica-
tions with multiple-producers/single-consumer patterns can benefit from
using this memory protocol by optimizing the access patterns to use re-
mote writes and local reads.

FIRST TOUCH: Each physical page is allocated—and stays—on the node
that first accessed the virtual page. This protocol is targeted at parallel
applications with a mostly-write sharing pattern or little active sharing.

MIGRATION: Physical pages are allocated as in the FIRST TOUCH proto-
col, but they may migrate individually between the nodes depending on
the sharing pattern. A freeze/defrost mechanism [1] ensures that ping-
pong is minimized when multiple nodes simultaneously access the same
page, as a frozen page is not allowed to migrate. Sequential sharing pat-
terns can benefit from this protocol.

324 P. T. Koch et al.

MIG REP: This is an extension of the MIGRATION protocol where physical
pages are replicated when read by multiple nodes. Coherency mechanisms
assure that the memory consistency model is respected. Sharing patterns
with mostly-read shared data can use this protocol.

GLOBAL: This is similar to the MIG REP protocol, but to globally minimize
swap activity, decisions are coordinated with the virtual memory system
and idle remote memory is used as swap space instead of local disk. This
can benefit applications that need large amounts of memory.

SciOS uses relaxed memory consistency for the MIG REP and GLOBAL
protocols which replicate pages. The model is based on Lazy Release Con-
sistency [10] which requires shared memory accesses to be synchronized. In-
stead of immediately invalidating all page copies when a replicated page is
modified, they are not removed until the remote node enters a critical section.
For correctly synchronized applications, this assures sequential consistency as
expected by many applications.

18.4.2 Main File System Data Structures

SciOS has currently only implemented a root directory since the prototype is
focused on the integration with the virtual memory system for implementing
advanced memory management protocols, e.g., the GLOBAL protocol. All file
system data is placed in shared memory which is accessible remotely through
SCI. Linux does not distinguish between vnodes and inodes. Instead, both
file system dependent and independent data are contained in a unified inode.
In this section, an inode represents only the SciOS specific file information.

Both SciOS files and directories are represented by the same file entry
data structure which is stored in a directory file (shown in Figure 18.4). It
basically consists of a symbolic name and a pointer to an SciOS inode which
holds information on the file size, memory protocol, protection information,
etc. An inode holds a number of page entries which is sufficient for small files.
The page entry data structure is shown in Table 18.4. For large files, an inode
instead points to page tables which then contain the page entries (as in the
virtual memory system).

state Invalid, valid, frozen, or swapped to disk.
lock Lock to assure exclusive access to the page.
page addr SCI address of the physical page or a swap disk address.
copyset Indicates what nodes have a copy of the page.
mapset indicates what nodes have the page remotely mapped.

Table 18.4. Fields in a page entry data structure which is contained in a SciOS
inode or a page table.

18. Implementing A File System Interface to SCI 325

The virtual memory pages for a memory-mapped SciOS file are uniquely
identified in the cluster by a pageid which is a tuple (inode id, offset). On
each node, a map table describes which local processes have mapped each
SciOS file and at which virtual address. Given the map table and a pageid,
each node can easily find the relevant Linux page table entries, e.g., when
invalidating remote mappings, when migrating a page or when discarding
remote page copies on a write access to the page.

18.4.3 The GLOBAL Memory Protocol

In an SCI cluster, a page can be transferred to/from a remote memory roughly
50 times faster than to/from a local disk. This makes it possible to implement
highly efficient global memory management protocols that allow a node to
use a remote node’s memory as swap space instead of its local disk.

The GLOBAL memory protocol in SciOS [12] mixes remote mapping,
migration, replication and distributed swapping of shared pages. A physical
page is allocated on the first page fault (“first touch”). On subsequent page
faults, three possibilities exist:

1. establish a mapping to the remote page (for frozen pages),
2. migrate the page to the local node, or
3. replicate the page to allow local accesses.

We first describe the cases when there is enough physical memory availa-
ble. Then we describe the actions taken when a page must be swapped, i.e.,
when there is not enough physical memory. The actions performed on page
faults are summarized in the decision tree shown in Figure 18.5.

Enough free physical memory. A page that is already present in the local
physical memory, e.g., mapped by another process, is mapped directly in the
process. If the page is placed on a local or remote disk, we allocate a new
physical page and read the page from disk. If the page is in a remote memory,
it is first checked if the page is or should be frozen. The decision to freeze a
page is based on an invalidation time associated with each page. This value
is updated, when the page is either migrated or has all its copies discarded on
a write access. If the invalidation time of the page has been updated recently,
the page is frozen. A frozen page will never be migrated, and is thus always
mapped over the network.

A page that is not frozen can be either migrated or replicated. On a
write access, the page is always migrated to the node of the writing process,
any mappings of the page made by other nodes are invalidated, and the
invalidation time is updated. On a read access the page can be replicated,
if the page has not been modified recently. For replicated pages, the master
copy and all the page copies are marked read-only to the virtual memory
system. On a write access to a replicated page, a page fault is generated and
all other page copies are discarded. Then the page is marked read/write, its

326 P. T. Koch et al.

Condition

Legend:

action

Idle memory

(locally)

Replication

Disk swap in
Swap out

+
Disk swap in

Exchange

High

Idle memory

(locally)
Low

Last
invalidation

Migration

Remote map

(locally)

Idle memory

condition
Examine

option Choose
option

Valid page

Swap out

Replication

action
Perform

+

Recent

Access type Read

Write

Last write

Long ago

LowHigh High Low

Long ago

Recent

Page fault

Frozen page Page on disk

Fig. 18.5. Decision tree for handling page faults in SciOS

invalidation time is updated and the process can continue its modification of
the page.
Not enough free physical memory. When it is not possible to allocate
a new physical page, an old page must be swapped out first. The decision
about where to place a page that needs to be swapped out depends on the
type of page fault event that caused the swap out:

1. To make room for a migrating page from node Q, the node P needs to
swap out its oldest page. This can be optimized by an exchange operation.
Because a migration means that node Q frees a page, node P can simply
exchange its oldest page with the migrating page from node Q.

2. A node P needs to free a page because it is fetching a page from a disk or
replicating a remote page. If the oldest page on node P is not a replica or
a frozen page, we ask the node with the globally oldest page, say node R,
to swap it out. When R has finished, we copy the locally oldest page from
node P to node R and then load the needed page from disk or replicate
the page. (P and R can be the same node.)

In the second case, the node with the globally oldest pages is found by
examining the weights computed by a daemon (see Section 18.4.4). The algo-
rithm used when swapping out a page approximates a global LRU [3]. When

18. Implementing A File System Interface to SCI 327

a node swaps out its oldest page and it is a replica, it can just be discarded if
a copy of the page remains on another node. A frozen page can be migrated
to a node that already maps it remotely.

18.4.4 Memory Protocol Implementation in Linux

The implementation of the different SciOS memory protocols are all based
on the most complex protocol, GLOBAL. As an example, the MIG REP
protocol swaps pages to disk in contrast to GLOBAL which tries to place the
page in an idle remote memory.

SciOS is implemented by providing the following:

Kernel module routines which can initialize and remove a Linux kernel mo-
dule. The module consists of two layers on top of Dolphin’s PCI-SCI
driver, but it uses only a few low-level functions in the driver. The bot-
tom layer extends the functionality of the driver with generic functions
such as page allocation and mapping of remote pages. The top layer
defines the SciOS file system type which is used for mounting.

Virtual file system operations that implement the mounting and unmounting
of the file system and file operations such as create, lookup, unlink (see
Table 18.2). We use the default Linux operations for open and close, and
we have yet to implement many directory operations like mkdir.

A daemon, implemented as a kernel thread on each node, that periodically
collects information on the file accesses of all processes mapping SciOS
files. Frozen pages are defrosted after a certain time interval. Ages are
computed for each physical page—mapped locally or not—and age sta-
tistics are distributed to the other nodes.

Virtual memory operations which, for each memory-mapped SciOS file, treat
page faults (nopage and wppage) and swap events (swapout/swapin) ori-
ginating from Linux’s virtual memory system (see Table 18.3). The deci-
sion of the page fault handler for migration or replication may be based
on information held on remote nodes. In those cases, communication is
based on the PCI-SCI adapter’s ability to generate remote interrupts,
e.g., when invalidating remote mappings before migrating a page.

Synchronization primitives, implemented as ioctl calls, which are based on
the PCI-SCI adapter’s ability to perform atomic fetch-and-increment
operations on remote memory. The primitives also interact with SciOS’s
consistency model. E.g., when acquiring a lock, all page copies that have
been invalidated are removed, possibly stale cache blocks are invalidated,
and prefetch buffers are emptied. On a lock release, SciOS notifies remote
nodes about invalidated pages, flushes the processor’s write buffers along
with the PCI-SCI adapter’s streams.

The implementation of GLOBAL depends much on the capabilities of
the virtual memory system. The Linux virtual memory operations (see Ta-
ble 18.3) specify the wppage operation which is called when a read-only page

328 P. T. Koch et al.

is modified. In SciOS, it is used to detect writes to a replicated page. This
operation was no longer implemented in Linux version 2.0 so we had to re-
implement this functionality to have SciOS treat the event. The default action
is for Linux 2.0 to do a copy-on-write which is not what SciOS needs in this
case.

18.5 Related Work

SciOS draws on the research in multiple areas. Memory based file systems
have traditionally been used to increase performance of access to temporary
files. The earliest memory-based file systems used a fixed collection of phy-
sical pages as a block device (a RAM disk) with a conventional file system
on top. This static allocation of physical pages may waste system resour-
ces. The Pageable Memory Based Filesystem [14] uses pageable memory to
decrease the use of physical pages, but it still uses a block device interface
to the memory resulting in a file system with a fixed size. The tmpfs [16] is
a special purpose memory-based file system that makes use of the vnode/vfs
framework. As tmpfs does not use a block device approach the file system
implementation itself handles all memory administration in cooperation with
the virtual memory system. This allows the file system to dynamically ad-
just its size according to usage. Metadata is kept in kernel memory, but all
data is stored in pageable memory. SciOS extends this concept by providing
a distributed memory-based file system.

The Global Memory Service (GMS) [3] implements a global swap me-
chanism based on approximate information about the cluster-wide state of
the physical memory. GMS is implemented as a low-level operating system
service that can be used by many types of clients, i.e., the paging system.
Shared pages are replicated and are simply discarded if swapped out, like in
SciOS. Consistency of shared pages is the responsibility of the GMS clients,
but there are no mechanisms to handle consistency (e.g., there are no pri-
mitives to invalidate remote replicas). If a GMS client replicates pages itself,
GMS will treat the replicas as distinct pages and two replicas can thus end
up on the same node. The N-Chance forwarding algorithm [2] coordinates
caches for a distributed file system. The node used for placing swapped out
pages is randomly picked. The cache blocks are kept coherent using a single-
writer/multiple readers protocol. But this can mean a ping-pong effect for
pages that are write shared or are subject to false sharing effects.

The NUMA migration, freeze/defrost, and replication techniques used in
SciOS are based on the results of PLATINUM [1], the studies by LaRowe
et al. [13], and later CC-NUMA studies. Verghese et al. [18], like SciOS,
take the amount of idle memory into consideration when replicating pages
on a CC-NUMA architecture. Their system stops replicating pages when
memory pressure is experienced on a node. With SciOS, we replicate pages
even if it means that another page needs to be swapped out. Because remote

18. Implementing A File System Interface to SCI 329

accesses are much more expensive on an SCI cluster than on CC-NUMA
and because SciOS presently does not replicate at the cache block level for
remotely mapped pages, we believe that page replication is an important
optimization even under memory pressure. We do age replica pages faster
than normal pages, thereby allowing the node to quickly free the physical
page, e.g., for another replicated page.

The Cashmere-2L system [17] is implemented on a cluster of SMP nodes
and uses the write-only based Memory Channel [5]. Memory coherency is
maintained in hardware within each SMP node (first level) and is based
on a home-based lazy release consistency model between nodes (second le-
vel). Cashmere-2L is, like TreadMarks [9], based on the twin/diffs technique
which allows multiple writers to a shared page. Experiments show that the
twin/diffing can perform better than “write doubling” on a one-level version
of Cashmere. The write doubling technique tries to emulate a load/store in-
terface on the write-only network not only making writes to a remote master
copy, but as as well to a local copy. In SciOS , the twin/diffing can en-
hance performance—compared to a remote mapping to a frozen write-shared
page—for applications with much cache locality for frozen pages. But the
twin/diffing uses extra physical memory. We plan to study the twin/diffing
technique together with the possibility enabling the processor caches for re-
mote load/store accesses on the PCI-SCI adapter.

Ibel et al. have implemented a global address space at the user level using
the Spilt-C language on an SCI cluster[8]. Because SciOS is implemented in
the kernel, we can share the physical memory and remote mappings between
applications/processes. SciOS can be used by many different languages and
is not dependent on pointer indirections.

18.6 Summary and Conclusions

We have shown how a file system interface can be used as a low-level interface
to SCI. The file system interface provides protection and symbolic naming of
shared memory objects; both of them can be useful in large scale multi-user
SCI clusters. Furthermore, memory mapped files provide efficient sharing of
memory objects. All this is done using a stable and well-known interface. In
addition, the interface must be augmented by synchronization mechanisms
needed by parallel applications, e.g., with ioctl file control operations.

SCI can be integrated with the operating system kernel in a modular way
across a wide range of operating systems using a virtual file system. The
interface to the virtual memory system is not part of the virtual file system
interface which can complicate the porting of complex file systems to other
operating systems like Windows NT. The same issue exists for device driver
interfaces to SCI.

Our prototype, SciOS, is an example of how a distributed shared virtual
memory system with remote swapping facilities can be implemented in Li-

330 P. T. Koch et al.

nux. SciOS is tightly integrated with the operating system, and the kernel
interfaces are powerful enough to allow the implementation of even complex
memory protocols. Even though a SciOS memory page can be swapped to
disk, SciOS does not support files that survive system crashes. Because SciOS
uses the file system interface, it is possible to extend the file system with non-
volatile storage and reliability in a straightforward way. Such extensions will
only require changes to the SciOS code, not the interface.

SciOS implements different memory protocols which can complicate the
structuring of the file system. The latest development in extensible file sy-
stems [7] allows file system modules to extend the functionality of existing
ones. Such functionality could be used to structure the implementation of
the different SciOS memory protocols and to add new functions such as per-
sistence.

Acknowledgements

K̊are Løchsen and Hugo Kohmann from Dolphin Interconnect Solutions (Nor-
way) willingly granted us access to the driver source code for the PCI-SCI
adapter and answered all of our questions. Roger Butenuth from Universität
Paderborn (Germany) kindly gave us access to his Linux port of the PCI-SCI
driver. Jean-Philippe Fassino assisted in the early implementation phase of
SciOS. We are grateful for the discussions with members of INRIA’s research
groups who use SCI clusters. Eric Jul provided us with valuable comments
and language corrections.

References

1. Alan Cox and Robert Fowler. The Implementation of a Coherent Memory Ab-
straction on a NUMA Multiprocessor: Experiences with PLATINUM. In Pro-
ceedings of the 12th ACM Symposium on Computer Architecture, December
1990.

2. Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A.
Patterson. Cooperative Caching: Using Remote Client Memory to Improve File
System Performance. In Proceedings of the First USENIX Symposium on Ope-
rating Systems Design and Implementation (OSDI), pages 267–280, November
1994.

3. Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin,
Henry M. Levy, and Chandramohan A. Thekkath. Implementing Global Me-
mory Management in a Workstation Cluster. In Proceedings of the 15th ACM
Symposium on Operating System Principles, pages 201–212, December 1995.

4. Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessy, and
Mark D. Hill. Programming for Different Memory Consistency Models. Journal
of Parallel and Distributed Computing, 15(4):399–407, August 1992.

5. Richard B. Gillett. Memory Channel Network for PCI. IEEE Micro, 16(1):12–
18, February 1996.

6. Berny Goodheart and James Cox. The Magic Garden Explained: the Internals
of UNIX System V Release 4, An Open Systems Design. Prentice Hall, 1994.

18. Implementing A File System Interface to SCI 331

7. John S. Heidemann and Gerald J. Popek. File-System Development with Stack-
able Layers. ACM Transactions on Computer Systems, 12(1):58–89, February
1994.

8. Maximilian Ibel, Klaus E. Schauser, Chris J. Scheiman, and Manfred Weis.
High-Performance Cluster Computing Using SCI. In Hot Interconnects Sympo-
sium V, August 1997.

9. Peter Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and Operating
Systems. In Proceedings of the 1994 Winter USENIX Conference, pages 115–
132, January 1994.

10. Peter Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy Release Consistency
for Software Distributed Shared Memory. In Proceedings of the 19th Internatio-
nal Symposium on Computer Architecture, pages 13–21, May 1992.

11. S. R. Kleiman. Vnodes: An Architecture for Multiple File System Types in
Sun UNIX. In Proceedings of the USENIX Summer Conference, pages 238–247,
1986.

12. Povl T. Koch, Emmanuel Cecchet, and Xavier Rousset de Pina. Global Mana-
gement of Coherent Shared Memory on an SCI Cluster. In Proceedings of SCI
Europe 98, pages 51–57, Bordeaux (France), September 1998.

13. Richard P. Larowe Jr., Carla Schlatter Ellis, and Laurence S. Kaplan. The
Robustness of NUMA Memory Management. In Proceedings of the 13th ACM
Symposium on Operating System Principles, pages 137–151, October 1991.

14. Marshall K. McKusick, Michael K. Karels, and Keith Bostic. A Pageable Me-
mory Based Filesystem. In Proceedings of the Summer 1990 USENIX Technical
Conference, pages 137–143, June 1990.

15. Rajeev Nagar. Windows NT File System Internals: A Developers Guide.
O’Reilly, 1997.

16. P. Snyder. tmpfs: A Virtual Memory File System. In Proceedings of the Autumn
1990 European UNIX Users’ Group Conference, pages 241–248, October 1990.

17. Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas
Kontothanassis, Srinivasan Parthasarathy, and Michael Scott. Cashmere-2L:
Software Coherent Shared Memory on a Clustered Remote-Write Network. In
Proceedings of the 16th ACM Symposium on Operating System Principles, pages
170–183, October 1997.

18. Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating
System Support for Improving Data Locality on CC-NUMA Compute Servers.
In Proceedings of the 7th Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 279–289, October 1996.

19. Programming SCI Clusters Using Parallel
CORBA Objects

Thierry Priol1, Christophe René1, Guillaume Alléon2

1 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France
email: {priol, crene}@irisa.fr
http://www.irisa.fr/

2 Aerospatiale Joint Research Centre, 12 rue Pasteur, BP 76,
92152 Suresnes Cedex, France
email:Guillaume.Alleon@siege.aerospatiale.fr

19.1 Introduction

This chapter introduces a programming environment for SCI clusters that
takes advantage of both parallel and distributed programming paradigms. It
aims at helping programmers to design high performance applications based
on the assembling of generic software components. This environment is based
on CORBA (Common Object Request Broker Architecture), with our own
extensions to support parallelism across several cluster nodes within a distri-
buted system. Our contribution concerns extensions to support a new kind
of object, which we call a parallel CORBA object (or parallel object), as well
as the integration of message-passing paradigms, mainly MPI, within a par-
allel object. These extensions exploit as much as possible the functionality
offered by CORBA and require few modifications to an available CORBA
implementation. This paper reports on these extensions and the description
of a runtime system, called Cobra, which provides resource allocation services
for the execution of parallel objects.

The chapter is organized as follows. Section 19.2 discusses some issues re-
lated to parallel and distributed programming. Section 19.3 gives a short in-
troduction to CORBA. Section 19.4 describes the concept of parallel CORBA
objects. Section 19.5 introduces the Cobra runtime system for the execution
of parallel objects. Section 19.6 presents a case study based on a signal pro-
cessing application from Aerospatiale. Section 19.7 describes some related
work which has some similarities with our work. Finally, Section 19.8 draws
some conclusions and outlines perspectives of this work.

19.2 Parallel vs. Distributed Programming

Thanks to the rapid performance increase of today’s computers, it can be
now envisaged to couple several computationally intensive numerical codes
to simulate more accurately complex physical phenomena. Due to both the in-
creased complexity of these numerical codes and their future developments, a

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 333-348, 1999
© Springer-Verlag Berlin Heidelberg 1999

334 T. Priol, C. René, G. Alléon

tight coupling of these codes cannot be envisaged. A loose coupling approach
based on the use of several components offers a much more attractive solution.
One can envisage to couple fluid and structure components or thermal and
structure components. Other components can be devoted to pre-processing
(data format conversion) or post-processing of data (visualization). Each of
these components requires specific resources (computing power, graphics, spe-
cific I/O devices). A component which requires a huge amount of computing
power can be parallelized so that it will be seen as a collection of processes
to be run on a set of cluster nodes. Processes within a component have to
exchange data and have to synchronize. Therefore, communication has to be
performed at different levels: between components and within a component.
However, the requirements for communication between or within a compo-
nent are quite different. Within a component, since performance is critical,
low-level message-passing is required, whereas between components, although
performance is still required, modularity/interoperability and re-usability are
necessary to develop cost effective applications using generic components.

However, until now, most programmers who are faced with the design of
high-performance applications use low-level message-passing libraries such as
MPI or PVM. Such libraries can be used for both coupling components and
for handling communication among processes of a parallel component. It is
obvious to say that this approach does not contribute to the design of applica-
tions using independent software components. Such communication libraries
were developed for parallel programming; they do not offer the necessary
support for designing components which can be reused by other applications.

Solutions already exist to decrease the design complexity of such applica-
tions. Distributed object-oriented technology is one of them. A complex appli-
cation can be seen as a collection of objects which represent the components,
running on different machines and interacting using remote object invocati-
ons. Emerging standards, such as CORBA, support the design of applications
using independent software components through the use of CORBA objects.
For the rest of the chapter, we will use the term object to name a CORBA ob-
ject. CORBA is a distributed software platform which supports distributed
object computing. However, exploitation of parallelism within such an ob-
ject is restricted in a sense that it is limited to a single node within a cluster.
CORBA implementations such as Orbix from Iona Technologies [8], allow the
design of multi-threaded objects that can exploit several processors within a
single SMP (Symmetric Multi-Processing) node. Such an SMP node cannot
offer the large number of processors which is required for handling scientific
applications in a reasonable time frame. However, the required number of
processors is available at the cluster level where several dozens of machines
are connected. Nevertheless, application designers have to deal “manually”
with a large number of objects that have to be mapped onto different nodes
of a cluster, and to distribute computations and data among these objects.

19. Parallel CORBA Objects 335

Therefore, either parallel and distributed programming environments have
their limitations which do not allow the design of high performance applica-
tions using a set of reusable software components. The remaining part of this
chapter introduces a programming environment which combines the advan-
tages of both parallel and distributed programming.

19.3 An Overview of CORBA

Object
invocation

Object
implementation

IDL stub
Object
adapter

IDL
skeleton

Object Request Broker

CORBA object

Client
node

Server
node

Fig. 19.1. CORBA system architecture

CORBA is a specification from the OMG (Object Management Group)
[7] to support distributed object-oriented applications. An application based
on CORBA can be seen as a collection of independent software components
or CORBA objects. Remote method invocations are handled by an Object
Request Broker (ORB) which provides a communication infrastructure inde-
pendent of the underlying network. Within the ORB, several protocols exist
to handle specific network technologies. The most important protocol is the
IIOP (Internet Inter-ORB Protocol) which is used to support Ethernet-based
networks. However, IIOP was designing for interoperability and thus offers li-
mited performance. Fortunately, CORBA designers have provided the ESIOP
(Environment-Specific Inter-ORB Protocol) which can handle other network
technologies (SCI, for instance). An object interface is specified using the
Interface Definition Language (IDL). An IDL file contains a list of operati-
ons for a given object that can be remotely invoked. Figure 19.1 provides a
simplified view of the CORBA architecture. In this figure, an object located
at the client side is bound to an implementation of an object located at the
server side. When a client invokes an operation of the object, communication
between the client and the server is performed through the ORB thanks to
the IDL stub (client side) and the IDL skeleton (server side). The stub and

336 T. Priol, C. René, G. Alléon

the skeleton are generated by an IDL compiler taking as input the IDL speci-
fication of the object. Since CORBA is independent of the language used for
the object implementation, an IDL compiler may generate stubs for different
languages (e.g., Java, C++, Smalltalk). An object can thus be implemented
in C++ and called by a client implemented in Java. The following example
shows a simple IDL interface:

interface myservice {
void put(in double a);
int put(out double a);
double myop(inout long i, inout long j);

};

An interface corresponds to an object class and an operation to an object
method. In this interface example, there are two operations associated with
the interface. Each operation has a single parameter. An operation parameter
is assigned a type which is similar to a C++ type (e.g., a scalar, an array). A
keyword added just before the type specifies if the parameter is an input or
an output parameter or both. IDL types are mapped to the language to be
used at the server and the client side. IDL provides an interface inheritance
mechanism so that services can be extended easily.

A CORBA-compliant system offers several services for the execution of
distributed object-oriented applications. It provides object registration and
activation through the use of repositories. Object registration consists of spe-
cifying a process that implements the object so that when an operation is
called, the process is executed.

19.4 Parallel CORBA Objects

CORBA was not originally intended to support parallelism within an object.
However, available CORBA implementations provide a multi-threading sup-
port for the implementation of objects. Such support is able to exploit several
processors sharing a physical memory within a single computer. This level
of parallelism does not require any modification to the CORBA specification
since it concerns only the object implementation at the server side. Instead
of having one thread assigned to an operation, it can be implemented using
several threads. However, the sharing of a single physical memory does not
allow a large number of processors since these could create bus and memory
contention. One objective of our work is to exploit the several dozens of nodes
available within a cluster to carry out a parallel execution of an object. To
reach this objective, we introduce the concept of parallel CORBA object.

19.4.1 Execution Model

The concept of parallel objects relies on an SPMD (Single Program Multiple
Data) execution model. A parallel object is a collection of identical objects

19. Parallel CORBA Objects 337

Object
invocation

Object
implementation

IDL stub
Object
adapter

IDL
skeleton

Object Request Broker

Process

Server 1

Object
implementation

Object
adapter

IDL
skeleton

Process

Server n

Parallel CORBA object
=

CORBA object collection

Parallel server node

...

Client
node

Fig. 19.2. Parallel CORBA object service execution model

having their own data, in compliance with the SPMD execution model. Figure
19.2 illustrates the concept of parallel objects. From the client side, there is no
difference in calling a parallel object to calling a standard object. Parallelism
is thus hidden to the user. When a call to an operation is performed by a
client, the operation is executed by all objects belonging to the collection. The
parallel execution is handled by the stub that was generated by an Extended-
IDL compiler which is a modified version of the standard IDL compiler.

19.4.2 Extended-IDL

Like a standard object, a parallel object is associated with an interface which
specifies the operations available. However, this interface is described using an
IDL we extended to support parallelism. Extensions to the standard IDL aim
at both specifying that an interface corresponds to a parallel object and at
distributing parameter values among the collection of objects. Extended-IDL
is the name of these extensions.

Specifying the degree of parallelism. The first IDL extension corre-
sponds to the specification of the number of objects of the collection that
will implement the parallel object. Modifications to the IDL language consist
of adding two brackets to the IDL interface keyword. A parameter can be
added within the two brackets to specify the number of objects belonging to
the collection. This parameter can be a “*”, which means that the number of
objects belonging to the collection is not specified in the interface. An integer
value or a function which determines the number of objects, is also valid. The
following example illustrates the proposed extension:

interface[*] ComputeFEM {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err);

};

338 T. Priol, C. René, G. Alléon

In the previous example, the number of objects will be determined at run-
time depending on the available resources (i.e., the number of cluster nodes
if we assume that each object of the collection is assigned to a single node).
The implementation of a parallel CORBA object may require a given number
of objects in the collection to be able to run correctly. The following code
gives an example of a parallel object service which comprises four objects:

interface[4] ComputeFEM {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err);

};

Instead of giving a fixed number of objects in the collection, a function
may be added to specify a valid number of objects in the collection. The fol-
lowing example illustrates this possibility. In this case, the number of objects
in the collection may be only a power of two:

interface[nˆ2] ComputeFEM {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err);

};

IDL allows a new interface to inherit from an existing one. Parallel in-
terfaces can do the same but with some restrictions. A parallel interface can
inherit only from an existing parallel interface. Inheritance from a standard
interface is prohibited. Moreover, inheritance is allowed only for parallel inter-
faces that can be implemented by a collection of objects with a corresponding
number of objects. The following examples illustrate this restriction:

interface[*] MatrixComponent {
void matrix_vector_mult(in double mat[100][100], in double v[100],

out double u[100]);
void matrix_transpose(in double A[100][100],

out double B[100][100]);
};
interface[nˆ2] ComputeFEM : MatrixComponent {

void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err)

};

In this example, interface ComputeFEM inherits from interface Matrix-
Component. The new interface has to be implemented using a collection ha-
ving a square number of objects. In the following example, the inheritance is
not valid:

interface[3] MatrixComponent {
void matrix_vector_mult(in double mat[100][100],

in double v[100], out double u[100]);
void matrix_transpose(in double A[100][100],

out double B[100][100]);
};

19. Parallel CORBA Objects 339

interface[nˆ2] ComputeFEM : MatrixComponent {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err)

};

The Extended-IDL compiler will generate an error when compiling this
specification. The intersection of the valid range of values of each inherited
parallel interface and the new parallel interface must not be empty; otherwise
the inheritance is not valid.

Specifying data distribution. Our second extension to the IDL language
to support parallel objects concerns data distribution. Remember that the
execution of a method on the client side will provoke the execution of the
method on every object of the collection on the server side. Since each object
of the collection performs a part of the work and has its own separate address
space, we must envisage how to distribute the parameter values for each
operation. We add new keywords to specify how to distribute the parameter
values among the objects of the collection. The following paragraphs will
explain how the data can be distributed for both in, out and inout modes
depending on their type. A data-distribution extension of an IDL specification
is allowed only for parameters of operations defined in a parallel interface.

The IDL language provides multidimensional fixed-size arrays which con-
tain elements of the same type. Types can be either basic or constructed
types. The size along each dimension has to be specified in the definition.
We provide some extensions to allow the distribution of arrays among the
objects of a collection. Data distribution specifications apply for in, out and
inout modes. These data distribution specifications follow those already defi-
ned by HPF (High Performance Fortran). This design choice permits to map
Extended-IDL to the HPF language in the future. It will be thus possible to
implement a parallel object using HPF. Such a mapping could be based on
the IDL to Fortran90 compiler which is being designed and implemented wit-
hin the Esprit PACHA project. The following example gives a brief overview
of the proposed extension:

interface[*] MatrixComponent {
void matrix_vector_mult(in dist[BLOCK][*] double mat[100][100],

in double v[100],
out dist[CYCLIC] double u[100]);

};

This extension consists of adding the new keyword dist, which specifies
how an array is distributed among the objects of the collection. The 2D
array mat is distributed by blocks of rows. Since the parameter is assigned
an in mode, each object of the collection will receive a block of rows instead
of the whole array. A distributed array of a given IDL type is mapped to
an unbounded sequence of this IDL type which has been extended to store
information related to the distribution. An unbounded sequence offers the

340 T. Priol, C. René, G. Alléon

advantage that its length is determined at runtime. Scattering of distributed
arrays among the objects of a collection is performed by the stub generated
by the Extended-IDL compiler. If the client is itself a parallel object, the
stub is in charge of gathering data from client objects before sending them to
the server objects with the correct distribution. In the previous example, the
number of objects in the collection is not specified in the interface. Therefore,
the number of elements assigned to a particular object can be known only
at runtime. Parameter v does not have a data distribution specification so
that each object receives the whole array. The last parameter u has an out
mode assigned to it. Each object of the collection will send back to the client
a part of the array. The code generated by the Extended-IDL compiler is
in charge of gathering the data from the objects of the collection and to
give them back to the client which invoked the operation. Gathering may
include a redistribution of data if the client is itself a parallel object. As a
matter of fact, distribution of variable u may not be identical at the client and
the server side. At the client side, information related to the distribution is
stored in the corresponding unbounded sequence structure. This information
is accessed by the stub of the parallel object to redistribute data if necessary.

19.4.3 Implementation of Parallel CORBA Objects

As we have shown in the previous paragraphs, the code generated by the
Extended-IDL compiler is in charge of managing the communication bet-
ween a client that issues a request and a parallel object. The implementation
relies on a new stub to be generated by the Extended-IDL compiler. After
binding the client object to the parallel object, the client is able to send me-
thod invocations to the parallel object service. Modification of the ORB is
not required since the CORBA specification provides a mechanism to issue
multiple requests within a single call to the ORB. When an operation is in-
voked, a request is constructed containing the object references of all objects
belonging to the collection as well as the name of the operation to be invoked.
This request is then sent through the ORB which in turn will issue a request
to each object to execute the operation.

19.5 The Cobra Runtime System

The Cobra runtime system provides resource allocation for the execution of
parallel objects on SCI-based clusters. This runtime system is being deve-
loped with the Esprit PACHA R&D project. The project aims at building
a parallel scalable computer system for high performance applications. This
system includes both the development of hardware components and runtime
systems. Emerging standards both in software, namely CORBA, and in hard-
ware, namely SCI, are exploited to investigate the design and implementation

19. Parallel CORBA Objects 341

4 x PC SMP - MSI
2 x 200 Mhz Pentium Pro
128 MB EDO RAM
2 GB Disk
PCI-SCI Card

Service nodes

Ethernet
Switch

100 Mb/s

Compute nodes Compute nodes

4 x PC SMP - SuperMicro
2 x 266 Mhz Pentium II
128 MB EDO RAM
4 GB Disk
PCI-SCI Card

2 x PC SMP - MSI
2 x 200 Mhz Pentium Pro
128 MB EDO RAM
2 GB Disk
PCI-SCI Card

Fig. 19.3. The PACHA multiprocessors

of a full-featured CORBA-compliant software with minimum overhead. The
Cobra runtime system is targeted to the PACHA multiprocessors, as shown
in Figure 19.3. It is based on the clustering of PC systems using the PCI-
SCI technology from Dolphin Interconnect Solutions. The machine is a set of
three SCI ringlets connected together through an SCI switch. The first SCI
ringlet contains two service nodes which act as the front-end of the PACHA
machine. These two nodes run the Cobra runtime system for resource allo-
cation. The two other SCI ringlets connect compute nodes. These compute
nodes are allocated to users on demand by the Cobra runtime system for
the execution of parallel objects. Resource allocation consists of providing
cluster nodes and shared virtual memory regions for the execution of parallel
objects.

19.5.1 Cobra Services

Cobra provides the concept of a virtual parallel machine which is associated
with the execution of a parallel object. Allocating a virtual parallel machine
consists of choosing a set of cluster nodes where objects of the collection will
be mapped to for execution. Selection of nodes is performed statically since
the PACHA multiprocessors act as a computational server. There are no other
applications running simultaneously with parallel objects. Dynamic strategies
could be added in the future to allow sharing of the machine by several user
applications. Cobra offers services for the allocation of virtual shared memory
regions. Such regions can be accessed simultaneously by several components

342 T. Priol, C. René, G. Alléon

of the application. We think that the coupling of software components will
need the exchange of unstructured data which cannot be passed efficiently
between components through the ORB due to the cost of marshaling and
de-marshaling data. The two resource allocation services are implemented
using CORBA objects so that they are available from any machine within
the cluster. Therefore, a client running somewhere in the network is able
to allocate resources through CORBA, and once the resources have been
allocated, a client can bind a parallel object to the virtual parallel machine
which has been created.

Cobra provides basic services for parallel programming. Execution of
objects belonging to a collection associated with a parallel object requires
some basic functions such as identification and communication between ob-
jects. Cobra provides an application programming interface for these objects.
This interfaces contains a set of C and Fortran77 functions for parallel pro-
gramming such as synchronization between objects (barrier, lock), low-level
message-passing and shared memory region management.

19.5.2 Cobra Software Architecture

Cobra has been designed for the PACHA multiprocessors and thus benefits
from the SCI technology. Cobra can allocate both physical nodes and shared
memory for the execution of parallel objects. Figure 19.4 shows the overall
architecture of Cobra. Cobra is a set of three standard CORBA objects which
run on the service nodes of the PACHA multiprocessors. Implementation of
these services is carried out using either MICO [14], a freely available CORBA
implementation from the University of Frankfurt, or ORBSCI, which is a
CORBA implementation being implemented by Spacebel within the PACHA
project.

The AdminProcess object provides services for the administration of the
multiprocessors. The RmProcess gives a set of services for resource allocation,
while AppProcess supports the execution of stand-alone applications. Since
several service nodes are allowed by the runtime system, resource allocation
tables are mapped onto SCI shared memory regions so that each service
node is able to access the allocation tables. Running on the compute nodes,
the NodeProcess object provides services to the RmProcess object for the
execution of objects belonging to a collection. Accesses to these services are
performed using either UNIX commands, specific APIs, or simply by using
the IDL specification.

Administration service. The AdminProcess service administers the PA-
CHA multiprocessors. It is mapped on a specific node of the machine which
is called the administration node that acts also as a service node. There is
always one such node in the PACHA multiprocessors. This service provides
basic support for adding and removing nodes or changing the node state. For
instance, at any time a compute node can be changed to a service node to

19. Parallel CORBA Objects 343

O
R
B

User’s
Process

UNIX command

O
R
B

User’s
Process

UNIX command

O
R
B

User’s
Process

UNIX command

O
R
B

CORBA
RmProcess

O
R
B

O
R
B

O
R
B

Service Node

PACHA Multiprocessors

Service/Administration Node
Node

User’s Workstation

O
R
B

NodeProcess Task 0

O
R
B

NodeProcess Task 1

O
R
B

NodeProcess Task 2

O
R
B

Free

Compute Node

VPM 1 : 3 Compute Nodes

O
R
B

Free

Compute Node

CORBA
RmProcess

CORBA
AdminProcess

CORBA
AppProcess

A
P

I
A

P
I

A
P

I
A

P
I

A
P

I

A
P

I

Fig. 19.4. The Cobra runtime system architecture

let more users have access to the PACHA multiprocessors. To protect the
system, the AdminProcesss service can be executed only by a user who has
administrator privileges. A list of users is maintained by the runtime system
indicating if a user is an administrator or a standard user. For each node of
the machine, the runtime system maintains a list of resources associated with
that node (e.g., access to a fast network, frame buffer, number of processors).
This information is used later when a set of nodes is allocated to a particular
parallel object which may require specific resources for execution.

Resource management service. The RmProcess service provides resource
management for standard users. This service is run on each service node of
the PACHA multiprocessors. It manages resources such as compute nodes
and shared memory regions provided by SCI. To let service nodes manage
their own set of users concurrently and to avoid contention when the num-
ber of users increases, allocation tables are shared between service nodes.
This sharing is performed using several SCI shared memory regions. Acces-
ses to these tables, by both the AdminProcess and RmProcess services, are
performed using critical sections to avoid any incoherent state.

The Cobra runtime system provides the concepts of a Virtual Parallel
Machine (VPM) and Shared Memory Regions (SMR). A VPM is a set of
compute nodes of the PACHA multiprocessors allocated by a user on demand.
It is identified in the system by a name. A VPM is used for the execution of
a parallel object. When executing a parallel object on a VPM, the runtime
system creates as many objects as there are processors in the compute nodes
of a VPM.

The second kind of resource managed by Cobra are shared memory regi-
ons. An SMR is identified by an unique name in the system. Shared memory

344 T. Priol, C. René, G. Alléon

regions can be used in several ways. They permit objects which are executed
on different nodes of a VPM to share data. An SMR is also a way to exchange
information between parallel objects running on different VPMs either simul-
taneously or sequentially. Exporting or importing an SMR between VPMs is
granted depending on access rights specified during the creation of the SMR.
Data stored in an SMR is persistent. Shared memory regions can thus be
seen as a data repository which can be used to avoid huge data transfers
between objects. Concerning the implementation, SMRs managed by Cobra
correspond either to SCI shared memory regions or Shared Virtual Memory
(SVM) regions [13]. SVM is implemented using SCI as a communication
layer, and it provides better performance since it offers page migration and
replication. Coherence is enforced by a strong consistency protocol.

Application service. Although the Cobra runtime system was mainly de-
signed to support execution of parallel objects, we provide a specific service,
called AppProcess, for supporting stand-alone applications (which are not
CORBA compliant). This service allows the loading and the monitoring of
parallel application (either SPMD or MPMD) onto a VPM using a set of
UNIX commands.

Application programming interface. The Cobra runtime system provi-
des several application programming interfaces for both the C and Fortran
languages. The first API supports the client side. It provides a function for
each operation of the IDL specification of the AdminProcess, RmProcess and
AppProcess services. At the server side, an API is provided for parallel pro-
gramming. This API contains C and Fortran functions for node identification,
low-level message passing, shared memory management and synchronization
such as locks and barriers.

19.6 A Case Study: The IDAHO Application

The IDAHO application is being developed by the Aerospatiale Joint Re-
search Centre for electromagnetic experimentation and simulation purposes.
The IDAHO application is a set of tools to help the engineers in processing
the data coming from experiments performed in an anechoic chamber. The
electro-magnetic illumination is generated by a transmitter-receiver driven
by the operator. The reduced model is placed on a rotating column in the
anechoic chamber. For each angle of rotation (from 0 to 360 degrees) and
each frequency (typically from 2 to 8 GHz), a complex number representing
the reflected field is stored. This experimentation procedure can last up to
90 hours and generate up to 1 GByte of data.

The IDAHO application has been designed to adopt a client/server ap-
proach to let engineers process data remotely from their workstations. The
most compute-intensive part of the application has been encapsulated in a

19. Parallel CORBA Objects 345

parallel object which contains several operations. Among them, the norma-
lization operation computes the correction on the measured values to balance
the noise effects of the anechoic chamber, using the measurements of the
empty chamber and the measurements of a reference. We can then represent
in 2D the reflected field for each rotation angle and each frequency. This
representation is commonly named hologram. The windowing normalization
operation is very similar to the previous one, except that it includes a win-
dow multiplication in the computation. This is used to focus the analysis
around the measured object. The ISAR image computation is an operation
to compute a 2D ISAR image, by making a 2D FFT on the data. With an
ISAR image, we are able to locate on the object the reflecting points. The
transverse response computation aims at calculating the 2D transverse res-
ponse, by making a 1D FFT on one dimension of the measured data. With a
transverse response, it is possible to follow a reflecting point while the object
is rotating in the anechoic chamber. Each of these operations has been paral-
lelized using the Cobra parallel application programming interface. The most
complex task is the parallelization of the matrix transpose needed by the 2D
FFT. The complexity is due to the limited size of shared memory regions
provided by the SCI driver (512 kByte). Preliminary results have shown a
speedup of three for the matrix transpose when running on a four-processor
VPM.

Cobra
services

CORBA object

VPM creation
(1)

IDAHO
proxy

CORBA object
IDAHO

IDAHO

IDAHO

Parallel CORBA object

Service node

Compute nodes

...

VPM deletion
(5)

Initialization (2)
Execution (3)

Visualization (4)

Java Applet

Fig. 19.5. The IDAHO client/server application

Visualization is performed using a graphical user interface which has been
implemented in Java to be run on any machine in the network. A version of
this interface has been designed and implemented as a Java applet. This
applet is stored on a service node of the PACHA multiprocessor which acts
as a Web server. Therefore, the IDAHO application can be executed from

346 T. Priol, C. René, G. Alléon

any machine in the network having a Web browser supporting Java. Figure
19.5 shows the client/server overall architecture of the IDAHO application.
In the first step (1), the applet connects to the Cobra services to allocate
a VPM, then it connects to a proxy object which acts as a bridge between
the applet and the parallel object. The proxy object has to be executed on
the service node from which the applet was downloaded. The proxy object
implements the same operations as the parallel object. The proxy object adds
communication overhead but is required as a result of the security rules of
the Java virtual machine. Once data has been sent to the parallel object (2),
parallel execution starts (3) and an image is sent back to the applet (4) as
a result of the execution. The final step (5) consists of releasing the VPM
which was previously allocated.

19.7 Related Work

Several projects deal with environments for high-performance computing
combining the benefits of distributed and parallel programming.

The RCS [1], NetSolve [4] and Ninf [15] projects provide an easy way to
access linear algebra method libraries which run on remote supercomputers.
Each method is described by a specific interface description language. Inter-
face descriptions have been made for all methods of standard libraries (such
as BLAS and LAPACK). Specific functions are provided for invoking me-
thods of these libraries. Arguments of these functions specify method name
and method arguments. These projects propose some mechanisms to manage
load balancing on different supercomputers. One drawback of these environ-
ments is the difficulty for the user to add new functions to the libraries.
Moreover, they are not compliant to relevant standards such as CORBA.

The Legion [5, 6] project aims at creating a world-wide environment for
high-performance computing. A lot of principles of CORBA (such as hetero-
geneity management and object location) are provided by the Legion runtime
system, although Legion is not CORBA-compliant. It manipulates parallel
objects to obtain high performance. All these features are in common with
our Cobra runtime system. However, Legion provides other services such as
load balancing on different hosts, fault tolerance and security which are not
present in Cobra. Furthermore, the Legion communication layer manages dif-
ferent networking technologies such as Ethernet and ATM.

The PARDIS [10, 11, 12] project proposes a solution very close to our pro-
ject because it extends the CORBA object model to a parallel object model.
A new IDL type is added: dsequence (for distributed sequence). It is a gene-
ralization of the CORBA sequence. This new sequence describes data type,
data size, and how data must be distributed among objects. The PARDIS
IDL compiler creates a new bind function, spmd bind, which is added to the
client’s stub. Concurrent threads may use this function to make a collective
request to a server. Therefore, this server has to reply only to one request.

19. Parallel CORBA Objects 347

For each operation listed in the interface description, the PARDIS IDL com-
piler adds a non-blocking method. Non-blocking functions may be executed
concurrently even if they are called in a sequential order. Out-arguments of
these functions are returned in futures. This idea results from the work on
parallel C++. In PARDIS, distribution of objects is up to the programmer.
This is the main difference from Cobra, for which a resource allocator is provi-
ded. Moreover, in Cobra, Extended-IDL allows to describe parallel services in
more detail, such as the number of objects associated with a parallel object.

19.8 Conclusion and Perspectives

This chapter described the Cobra runtime system which provides a software
environment for building high-performance applications using software com-
ponents. Cobra is a set of CORBA services for the execution of CORBA
parallel objects. A parallel object is a collection of standard CORBA ob-
jects. Its interface is described using an extension of IDL to manage data
distribution among the objects of the collection. Current work now focuses
on coupling numerical codes. Particular attention will be paid to the perfor-
mance of the ORB which seems to be the most critical part of the software
environment to get the desired performance. We are currently designing an
efficient ORB for MICO, based on the Virtual Interface (VI) architecture.

References

1. P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. In
Proceedings of HPCN Europe ’96, volume 1067 of LNCS, pp. 662–667, Springer
Verlag, 1996.

2. P. Beaugendre, T. Priol, G. Alleon, and D. Delavaux. A Client/Server Approach
for HPC Applications within a Networking Environment. In Proceedings of
HPCN Europe ’98, volume 1401 of LNCS, pp. 518–525, Springer Verlag, 1998.

3. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Sei-
zovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network.
IEEE Micro, 15(1):29–36, February 1995.

4. H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Com-
putational Science Problems. The International Journal of Supercomputer Ap-
plications and High Performance Computing, 11(3):212–223, 1997.

5. A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F. Reynolds.
Legion: The Next Logical Step Toward a Nationwide Virtual Computer. Tech-
nical Report CS-94-21, University of Virginia, 1994.

6. A. S. Grimshaw, W. A. Wulf, and the Legion Team. The Legion Vision of
a Worldwide Virtual Computer. Communications of the ACM, 1(40):39–45,
January 1997.

7. Object Management Group. The Common Object Request Broker: Architecture
and Specification 2.1. August 1997.

8. C. Horn. The Orbix Architecture. Technical Report, IONA Technologies, Au-
gust 1993.

348 T. Priol, C. René, G. Alléon

9. Dolphin Interconnect Solutions. CluStar Interconnect Technology. White Paper,
1998.

10. K. Keahey. A Model of Interaction for Parallel Objects in a Heterogeneous
Distributed Environment. Technical Report IUCS TR 467, Indiana University,
September 1996.

11. K. Keahey and D. Gannon. PARDIS: A Parallel Approach to CORBA. Tech-
nical Report IUCS TR 475, Indiana University, February 1997.

12. K. Keahey and D. Gannon. PARDIS: CORBA-based Architecture for
Application-level Parallel Distributed Computation. In Proceedings of Super-
computing ’97, November 1997.

13. K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Yale University, September 1986.

14. A. Puder. The MICO CORBA Compliant System. Dr. Dobb’s Journal, 291:44–
57, November 1998.

15. M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi.
Ninf: A Network Based Information Library for Global World-Wide Computing
Infrastructure. In Proceedings of HPCN Europe ’97, volume 1225 of LNCS,
pages 491–502, Springer Verlag, 1997.

20. The MuSE Runtime System for SCI
Clusters: A Flexible Combination of On-Stack
Execution and Work Stealing

Markus Leberecht

LRR-TUM, Technische Universität München
email: Markus.Leberecht@in.tum.de
http://wwwbode.in.tum.de/˜leberech/

20.1 Introduction

Beyond its high bandwidth and low latency properties, the Scalable Coherent
Interface (SCI) technology offers capabilities for a shared-memory communi-
cation paradigm on distributed systems. In particular, networked workstati-
ons and PCs can basically be transformed into NUMA machines. As such,
alternative execution models become possible that were otherwise infeasible
on networks of workstations. With LANs, these normally rely on an inade-
quate communication infrastructure and they are fixed to the message-passing
paradigm.

This chapter presents MuSE, the Multithreaded Scheduling Environment,
a runtime system using a number of particular features unique to its SCI-
based communication subsystem. MuSE provides an execution model that
is a combination of dataflow-based self-scheduling, multi-threaded execution,
and shared-memory communication with each of the three paradigms suppor-
ting the other two. Multithreaded execution is not only able to hide remote
access latencies appearing during distributed shared memory communication,
but it also helps to decrease dataflow-based scheduling overhead by avoiding
too numerous and small active entities. dataflow in turn provides simple gui-
delines for self-controlled load balancing of threads, and profits from a shared
memory-based communication paradigm in that a typical dataflow commu-
nication structure can be easily implemented by SCI’s remote-memory store
operations. MuSE’s services cover the range common to most runtime sy-
stems, including machine virtualization, i.e., providing applications with a
tractable machine model abstracted from the actual hardware, memory ma-
nagement, as well as load balancing and scheduling.

This chapter will focus on the methods and mechanisms used to imple-
ment MuSE’s load-balancing capabilities. In order to do so on a distributed
system, the migration of active entities is necessary. This degree of freedom
is generally prohibitive of executing code on a local node with the highest
possible efficiency. MuSE, however, attempts to enable load migration despite
using highly efficient, stack-based sequential execution during phases without
pending migration requests.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 349-364, 1999
© Springer-Verlag Berlin Heidelberg 1999

350 M. Leberecht

A good candidate for the inclusion of load migration methods is the fun-
ction call mechanism, as here a natural border between active entities exists.
During regular sequential execution, the most efficient method of calling a
subroutine is to push the return address onto the program stack and to per-
form a branch operation. On return to the caller function, the previously
stored return address, its continuation, can simply be retrieved by fetching it
from the location pointed to by the stack pointer. A following stack pointer
correction finishes the necessary actions. Using the stack for storing conti-
nuations only works because the program order for sequential programs can
be mapped onto a sequential traversal of the tree of function invocations, the
call tree. A parallel program execution, on the other hand, has to be mapped
onto a parallel traversal of the call tree that is now often named spawn tree. A
simple stack here does not suffice to hold the continuations (return addresses)
of more than one nested execution as can be seen from Figure 20.1.

CB

function A() {
 ...

}

 spawn B();

stack space has
to be allocated

A, thus additional
simultaneously with
B and C executing

}
 ...
 call C();
 call B();
 ...
function A() {

 ...
 spawn C();

B’s stack
overlayed by
C’stack history,

stack
growth

history
layed by A’s
later again over-

A’s A’s
stackstack
historyhistory

Fig. 20.1. Additional stack space is needed for parallel execution

Spawning, i.e., the allocation of function context memory from the heap,
as a common runtime mechanism enables the migration of activities to under-
loaded nodes in a parallel or distributed system. Techniques of load balancing
built on top of this feature are particularly important in the context of clusters
of PCs with varying interactive background load.

This chapter first briefly introduces the SMiLE cluster, a network of PCs
connected in a typical ringlet fashion by custom-developed SCI adapters.
Some communication performance figures are given in order to motivate the
need for low-overhead runtime mechanisms, in particular with respect to

20. The MuSE Runtime System for SCI Clusters 351

work migration. The following section then describes MuSE, the Multithrea-
ded Scheduling Environment, a scheduler prototype closely interfaced to the
DSM-type communication of SCI with the ability to dynamically switch bet-
ween on-stack and on-heap allocation of contexts. This property is utilized to
implement a distributed work-stealing algorithm that achieves a significant
improvement over runtime algorithms using purely heap-based execution on
conventional networks of workstations. SCI’s memory transactions are a cru-
cial building block for this as they allow to use the memory transaction-based
runtime mechanisms to be used in a distributed environment. A number of
synthetic benchmarks are used to assess the performance of the proposed
system. It can be concluded that speed-up scales well in the given small test
environment. A comparison with already existing systems and an identifica-
tion of further improvements finish the chapter.

20.2 The MuSE System

20.2.1 The SMiLE Cluster of PCs

The name SMiLE is an acronym for Shared Memory in a LAN-like Environ-
ment and represents the basic outline of the project. PCs are clustered with
the Scalable Coherent Interface (SCI) interconnect. Utilizing SCI’s built-in
distributed shared memory model, the SMiLE project defines three major go-
als: development of hardware in order to utilize and push forward SCI techno-
logy, development of software in order to provide well-known programming
interfaces on novel SCI-clustered systems, and development of concepts as
well as methods for the efficient use of DSM systems in cluster environments.
A good overview of the SMiLE project is given in [7].

The lack of commercially available SCI interface hardware for PCs during
the initiation period of the SMiLE project led to the development of our
custom PCI-SCI adapter card. Its primary goal is to serve as the basis of
the SMiLE cluster by coupling the PC’s I/O bus to the SCI interconnect. In
order to facilitate new DSM tool concepts, additional monitoring functions
can be easily integrated into this extensible system. The adapter is described
in great detail in [1] and in Chapter 4.

The SMiLE configuration used in the context of this chapter features four
Pentium PCs running at 133 MHz with 32 MByte of RAM and 2 GByte of
external storage coupled by four SMiLE PCI-SCI adapters in a ring configu-
ration. The operating system is Linux 2.0.33.

Active Messages 2.0 [9] have been implemented on SMiLE as a communi-
cation layer particularly suited to be a building block for distributed runtime
system communication. Its zero-byte message latency was measured to be
14 μs while a maximum throughput of 25 MByte/s can be reached with mes-
sages larger than 1 kByte.

352 M. Leberecht

20.2.2 The Multithreaded Scheduling Environment

The Multithreaded Scheduling Environment (MuSE) is a distributed run-
time system specifically targeting the SMiLE platform. Programs running
on MuSE are structured in a particular way in order to enable its load ba-
lancing strategy.

Two basic methods exist for this purpose: while in work sharing the load-
generating nodes decide about the placement of new activities, work stealing
lets under-loaded nodes request for new work. The Cilk project [2] highlighted
that the technique of work stealing is well suited for load balancing on distri-
buted systems such as clusters of workstations. Cilk implements an execution
infrastructure consisting of C language extensions, a compiler, and a distribu-
ted scheduler. Programs are decomposed by the compiler into non-blocking
fine-grain threads that can be run on any node of the system. This property
is used to implement scheduler queues with a hierarchical structure. This so-
called ready dequeue can hold the complete spawn tree of the application or
parts of it. By migrating not yet executed thread contexts, the closures, to
remote nodes, load balancing is achieved. By always choosing those closures
closest to the root of the spawn tree, provably optimal on-line schedules with
respect to time and space requirements can be achieved. However, in order to
permit the application of this technique, Cilk requires every thread to be exe-
cuted with a heap-allocated closure. This is necessary to avoid the situation
depicted in Figure 20.1. However, heap allocation only pays off and justifies
its overhead if the program execution actually uses the exhibited degree of
freedom. For program parts that are not actually executed in parallel due
to dynamic decisions or an excessive number of concurrent activities for the
given number of processors, this means a potential source of inefficiency as
unnecessary decomposition cost is paid.

MuSE in turn provides on-stack execution by default, avoiding this de-
composition cost when it is not necessary. This is motivated by the attempt
to profit from the high efficiency of sequential execution. In order to permit a
Cilk-like work-stealing flexibility nonetheless, a different policy of spawning
on-heap activities is required. The following structure of the runtime system
and its active entities provides the basis for this.
Organization of Active Entities. MuSE programs are compiled from the
dataflow language SISAL. In intermediate steps, appropriate dataflow graphs
are generated which are subsequently converted into MuSE-compliant C code.
The front end of the Optimizing SISAL Compiler (OSC) [3] combined with
a custom-made code generator and the SMiLE system’s gcc are utilized for
this purpose.
MuSE Graphs. A MuSE graph is the C code representation of IF1/2 dataflow
graphs and follows their semantics. IF1/2 descriptions are intermediate tex-
tual dataflow graph representations put out by OSC and are described in
detail in [11]. IF1/2 implement a simple language for the description of hier-
archical control and dataflow graphs. These graphs are represented in MuSE

20. The MuSE Runtime System for SCI Clusters 353

potentially blocking graph MuSE programnon-blocking thread

(macro-dataflow actor) (comparable to a function)

thread #2thread #1

op

op

op

op

thread #3

subgraph #1

subgraph #n-2

subgraph #n-1

subgraph #n

Fig. 20.2. MuSE program structure: non-blocking threads are combined into po-
tentially blocking graphs, a collection of which forms the MuSE program

by regular C functions with an appropriate declaration of parameters as well
as return values. Input data is brought into the graphs via regular C function
parameters, as is return data. Access to these within the graph is performed
via a context reference, in this case pointing to the appropriate stack location.
Thus, sequential execution of MuSE graphs is able to utilize the simple and
efficient on-stack parameter passing of conventional sequential languages.

For parallel execution, i.e., on-heap allocation of graph contexts, the same
mechanism is used. By allocating heap storage and changing the context re-
ference to heap storage, spawning is prepared whenever necessary, but trans-
parently to the MuSE application code. The rationale behind the decision
whether to either dynamically spawn or call a graph is explained below.

As spawning on a deeply nested level blocks at least one continuation
within the caller until the callee has finished, heap context allocation will be
performed for calling graphs on demand, resulting in lazily popping contexts
off the stack.

In order to allow for blocking and to exploit intra-graph concurrency
as well, graphs are subdivided into non-blocking activities called threads.
Blocking by default has to occur at thread borders at which execution will
later also resume. A graphical representation of graphs and their threads
within a MuSE program is shown in Figure 20.2.

MuSE Threads. A MuSE thread is a non-blocking sequence of C statements
that is executed strictly, i.e., once all input data is present, threads can be
run to completion without interruption. Threads are declared within a MuSE
graph with the THREAD START(thread number) statement and finished by the
THREAD END macro. These macros implement a simple guarded execution of
the C statements forming the thread. The guard corresponds to a numerical
synchronization counter responsible for implementing the dataflow firing rule.

MuSE threads are arranged in a simple as-soon-as-possible schedule wit-
hin the graph as their underlying dataflow code is guaranteed by the compiler

354 M. Leberecht

to be non-cyclic. Thus, whenever no blocking occurs, a MuSE graph executes
like a regular C function.
Contexts. As already pointed out, in the case of blocking, MuSE graphs need
to save their local data for later invocations. By default, graph parameters
are located on the stack as are graph-local variables. Thus, this data has to be
removed from the stack and put into a heap-allocated structure, the graph
context. A context has to reflect the data originally available on the stack
during sequential execution and thus has to contain at least a pointer to the
graph’s C function, its input values as well as a container for the return value,
some local variables, the threads’ synchronization counters, and potentially
the graph’s continuation.

By choosing this form of implementing dataflow execution, MuSE effec-
tively forms a two-level scheduling hierarchy. While the initial decision about
which graph to execute is performed by the MuSE scheduler, the scheduling
of threads within a graph is statically compiled in through the appropriate
thread order. However, for nested sequential execution, the scheduler is only
invoked once at the root of the call tree.

An advantage of this organization is the possibility to optimistically use
calls instead of spawns to execute any MuSE graph. This means that only in
those cases in which a spawn is occurring, the penalty for saving the context
on the heap, memory allocation and copy operations, is paid.

st
ac

k
gr

ow
th

(a) stack-based execution in MuSE

A’s context

B’s context

(b) blocking during stack-based execution

heapstack stack

A’s context

B’s context

C’s context

C’s context

Fig. 20.3. Two cases during stack-based execution in MuSE: completion without
blocking (a), or blocking at an arbitrary nesting level (b)

MuSE Stack Handling. MuSE by default treats execution as being sequential
first, thus attempting to use on-stack execution as long as it is possible. Only
when the actual need arises, heap storage is requested and execution can
proceed concurrently as follows (see Figure 20.3):

1. In the non-blocking case (a), execution can be completely stack-based.

20. The MuSE Runtime System for SCI Clusters 355

2. In (b), some graph C blocks. The blocking can occur several levels deeper
on the stack than where the sequential starting procedure or graph A is
located. As C blocks, its data is transferred to a heap-allocated context.
C returns to B, telling it through its return value that it has blocked.
For B this means that at least one of its threads, C’s continuation, will
not be executed. This results in subsequent blocking and heap allocation
operations until A is reached and all intermediate levels have blocked.
During this, however, all remaining work that is executable in the spawn
subtree below A has already been performed.

The described situation points out MuSE’s advantage: being stack-based
by default, this execution model offers a basically unlimited stack space to
each new graph call. Even in the case of a deeply nested blocking graph,
all remaining enabled work can proceed sequentially. Only those graphs that
really ever block need context space from the heap.

In detail, the mechanism works as follows:

– MuSE uses on-stack execution by default. Blocking is handled as described
above and changes the execution mode for the blocked graphs to on-heap.

– On-stack execution does only involve the scheduler on the topmost level
of the current spawn tree. Consequently, the polling operation within the
main scheduler loop may be delayed. As this may hamper forward progress
in the application and potentially starve other nodes due to not being ser-
viced properly, the runtime system has to ensure that this does not happen.
MuSE’s strategy limits the total number of graph calls that are allowed to
occur sequentially (MAX SEQUENTIAL). Should no blocking operation occur
during this time, the mode is nevertheless changed to on-heap execution
in order to invoke the scheduler.

Load Balancing and Parallelism Generation in MuSE. On the thread
level of execution, the dataflow firing rule provides the basis for an effective
self-scheduling.

MuSE graphs are executed strictly, too. As a newly spawned context
contains all input data and the graph’s continuation, a context can basically
be executed on any node. This property is used by the MuSE scheduler to
distribute work across all participating nodes of a MuSE system.

MuSE Work Stealing. While MuSE threads correspond roughly to Cilk
threads, their grouping into procedures or graphs has consequences regar-
ding work stealing. In Cilk, thread closures are migrated regardless of them
belonging to a particular procedure. This means that procedures do not exist
for the work-stealing algorithm, and thus the execution of a procedure may
be distributed over all nodes of the whole Cilk system.

In MuSE, threads do not have separate closures. Their parameters and
synchronization counters are combined within the graph context. MuSE thus
bases work stealing on contexts instead of single thread closures. It is hoped

356 M. Leberecht

that allocating a context once and performing a single migration per stolen
graph, the slightly larger communication and memory management overhead
of the larger graph context can be amortized. Additionally, data transports
between threads can be performed in local memory in contrast to Cilk.

MuSE Queue Design. In Cilk, threads run to completion without being in-
terrupted. The graphs in MuSE, however, can block. This means that a single
ready queue does not suffice in MuSE. A graph that is currently not being
executed can basically be in one of the three states READY, BLOCKED, and
UNBLOCKED and is either placed in the ready queue, a working queue, or in a
networking pool.

The ready queue has to service potential thief nodes as well as the local
scheduler in the same way as in Cilk. Therefore, a structure comparable
to the LIFO/FIFO token queue of the ADAM machine [5] was chosen, its
functionality, however, is equivalent to Cilk’s ready dequeue.

Communication. Communication across nodes in MuSE occurs in mainly
three places:

– while passing return values,
– during compound data accesses, and
– during work stealing of ready contexts.

Simple SCI transactions do not completely cover the functionality requi-
red to implement all three cases mentioned above. Thus, they have to be
complemented by actions taking place on the local and the remote node.
For instance, passing of dataflow values requires updating of synchronization
counters, while work stealing with its migration of complete contexts requires
queue-handling capabilities connected to these communication operations.

In order to accomplish these tasks with the least overhead, MuSE bases
all communication on the SMiLE Active Messages already mentioned in Sec-
tion 20.2.1. This is in accordance with other, similar projects. Cilk as well as
the Concert system [10] all rely on comparable messaging layers. Active Mes-
sages (AMs) have distinct advantages in this case over other communication
techniques:

1. The definition of request/response pairs of handler functions enables the
emulation of most communication paradigms through Active Messages.
For MuSE, the AM handler functions are structured such that they re-
present memory-oriented transactions operating directly with dataflow
tokens on graph context data. Basing this further on SCI, only a small
amount of additional overhead is introduced for the added functionality
and the convenient addressing scheme.

2. The handler concept of AMs allows to define sender-initiated actions at
the receiver without the receiver side being actively involved apart from
a regular polling operation.

20. The MuSE Runtime System for SCI Clusters 357

3. Due to the zero-copy implementation on the SMiLE cluster, Active Mes-
sages actually offer the least overhead possible in extending SCI’s me-
mory transactions to a complete messaging layer, as can be seen from its
performance figures [4].

Polling Versus Interrupts. Technical implementations of SCI-generated re-
mote interrupts unfortunately exhibit high notification latencies, as documen-
ted in [8] for the Solaris operating system and Dolphin’s SBus2-SCI adapter.
The reason for this lies in context switch costs and signal-delivery times wit-
hin the operating system. Thus, in order to avoid these, MuSE has to deal
with repeatedly polling for incoming messages. In its current implementation,
MuSE therefore checks the AM layer once during every scheduler invocation.

20.3 Experimental Evaluation

In order to assess MuSE’s capabilities, first its single-node scheduler perfor-
mance is characterized by timing runtime system services that are typically
executed repeatedly during the scheduler loop.

Following this, experiments on the four-node SMiLE system were per-
formed testing load-balancing properties under the light of SCI’s high raw
communication performance. The question is answered which run length SCI
effectively allows for the migration of graph contexts without sacrificing par-
allel performance and the scalability of the presented runtime system concept.

Additionally, the evaluation is completed by a test of MuSE’s load-
balancing behavior under heterogeneous background loads.

20.3.1 Basic Runtime System Performance

Table 20.1 summarizes the performance of several basic runtime services of
MuSE on the SMiLE cluster that are explained in more detail below:

tAM Poll is the time required for the Active Messages poll operation when no
incoming messages are pending. This effort is spent during every schedu-
ler invocation.

tget graph represents the time typically spent for finding a graph in the queues
to be executed next.

texec,best is the duration of an invocation of a graph by the scheduler whe-
never the context data is cached within the processor’s first-level and
second-level caches.

texec,worst in contrast denotes the same time spent with all context data
being non-cached in the processor caches (e.g., due to too large working
sets).

tcall is the amount of time being spent for the on-stack calling mechanism.

358 M. Leberecht

tspawn on the other hand represents the amount of time required for spawning
a graph, i.e., allocating new context memory from the heap, initializing
it, and placing it into the appropriate queue.

treturn data summarizes the time of the operations necessary for passing re-
turn values on the same node whenever this cannot be done on stack.

tqueue mgmt finally represents such actions as removing a context from one
queue and placing it into another.

The most important result of Table 20.1 is the fact that the on-stack
call overhead is smaller than the spawn overhead by more than an order of
magnitude.

Unfortunately, the uncached execution of an empty graph points to a
potential source of inefficiency of the current MuSE implementation: taking
more than 20μs doing no actual application processing may be just too high
for significantly fine-grained parallel programs.

Function Symbol Time [μs]
empty poll operation tAM Poll 0.9
obtain graph reference tget graph 0.25
empty graph execution (cached) texec,best 0.92
graph call overhead tcall 0.26
graph spawn overhead tspawn 3.9
empty graph execution (non-cached) texec,worst 21.9
local return-data passing treturn data 5.1
queue management tqueue mgmt 2.95

Table 20.1. Performance of various runtime system services

20.3.2 Load Balancing and Parallelism Generation

Load balancing. knary(k, m, i) is a synthetic test program that dynamically
builds a spawn tree. Three parameters define its behavior, of which the spawn
degree k describes the number of subgraphs being spawned in each graph,
the tree height m specifies the maximum recursion level to which spawning
occurs, and i is proportional to the number of idle operations performed in
each graph before the spawn operation gets executed.

The first experiment consists of running knary on MuSE in a pure on-
heap execution mode. The work-stealing mechanism performs load balancing
among the participating nodes. This mode of operation is essentially equiva-
lent to Cilk’s. The case with k = 4 and m = 10 showed the most representa-
tive behavior and is thus used in the remainder of this section.

Figure 20.4 displays the speed-up curves related to the respective single-
node execution time. The result is as expected: work stealing with per-default
on-heap allocation of contexts achieves good speed-up ratios. MuSE thus

20. The MuSE Runtime System for SCI Clusters 359

1

1.5

2

2.5

3

3.5

4

1 2 3 4

i = 1,000
i = 5,000

i = 10,000
linear speed-up

sp
ee

d-
up

number of nodes

Fig. 20.4. Speed-up ratios of knary(4, 10, 1000), knary(4, 10, 5000), and
knary(4, 10, 10000) with sequential execution times of 20.6 s, 43.0 s, and 73.1 s re-
spectively

conserves the positive Cilk-like properties. The sub-linear speed-up can be
explained by the significant costs of work stealing. The work-stealing latency
is dominated by the time required for migrating a graph context from the
victim to the thief node. Sending this 364 byte-sized chunk of memory is
performed via a medium-length Active Message and takes approximately
tmigrate � 120 μs using the SMiLE AMs, representing a throughput of about
3.3 MByte/s for this message size. Only a few microseconds have to be ac-
counted for the ready queue management on both sides and for the sending
of the return data token. The experimental data supports this reasoning.
As soon as the average execution time of a graph grows beyond the typical
work-stealing latency—a value of i = 5000 represents an approximate graph
runtime of 123μs—work stealing becomes increasingly beneficial.

Load balancing with dynamic on-stack execution. It is expected that resorting
to stack-based execution for mostly sequential parts of a program will help
to speed up a given application as the overhead for spawning in relation to
the actual computation time shrinks. Switching these modes is based upon
the guidelines presented in Section 20.2.2.

Again, knary(4, 10, 1000) was used to derive reasonable numbers for both
limits. Figure 20.5 displays the speed-up ratios for three different cases of
MAX SEQUENTIAL.

Absolute run times of the purely heap-based and the dynamically swit-
ched execution modes can be measured to drop by a factor of 2.8 to 3.4,
regardless of the MAX SEQUENTIAL setting used. Hence, dynamic switching
between the stack-based and the heap-based execution modes obviously of-

360 M. Leberecht

1

1.5

2

2.5

3

3.5

4

1 3 4

MAX_SEQUENTIAL = 10
MAX_SEQUENTIAL = 100

MAX_SEQUENTIAL = 1000
linear speed-up

2

number of nodes

sp
ee

d-
up

Fig. 20.5. Speed-up of knary(4, 10, 1000) for different values of MAX SEQUENTIAL.
Sequential runtime was t = 7.3 s

fers fundamental improvements over the purely off-stack execution of the
previous experiments.

In the single-node case, MuSE takes care of executing the application
purely on-stack, requiring only the initial graph plus its first level of four calls
to be executed with a spawned context. Its overhead is easily amortized over
the

∑9
i=1 4i = 349524 total graph calls in this program and thus represents

the truly fastest single-node implementation. In contrast to this, the single-
node runs of the previous experiments had to pay all the unnecessary spawn
overheads.

Increasing MAX SEQUENTIAL from 10 to higher values also improves speed-
up ratios, as can be seen from Figure 20.5. MAX SEQUENTIAL = 100 was chosen
as a compromise value since it realizes good speed-up while at the same time
keeping the polling latency low. For instance, an average graph runtime of
2 μs would yield a maximum of 200μs between two polls invoked by the
scheduler. Higher values for MAX SEQUENTIAL can still improve the speed-up
somewhat, yet also increase the polling latency.

Load balancing under heterogeneous loads. In order to assess MuSE’s capabi-
lity of dealing with unevenly distributed background load while retaining its
ability of switching execution modes dynamically, artificial load was systema-
tically placed on each SMiLE node in the form of separate Linux processes
in endless loops. Assuming a normalized processing throughput of Yi = 1

p for
each node with p equally active processes on the node, the maximum ideal
speed-up for n nodes would be

20. The MuSE Runtime System for SCI Clusters 361

Smax =
n∑

i=1

Yi. (20.1)

Thus, for a single background load on one node and two otherwise
unloaded nodes, MuSE execution can exploit a cumulated throughput of∑

Yi = 1
2 + 1 + 1 = 2.5 and therefore hope for a maximum speed-up of

Smax = 2.5.
Again, knary(4, 10, 1000) served as the test case. Table 20.2 summarizes

the experiments with up to four background loads.

nodes wall-clock speed-up max. ideal utilized max.
time [s] speed-up performance

1 background load
1 14.05 0.52 0.5 > 100 %
2 5.33 1.37 1.5 91.3 %
3 3.25 2.25 2.5 90.0 %
4 2.47 2.96 3.5 84.4 %

2 background loads
2 7.70 0.95 1 95.0 %
3 4.26 1.71 2 85.7 %
4 3.42 2.13 3 71.2 %

3 background loads
3 5.71 1.28 1.5 85.3 %
4 4.05 1.80 2.5 72.1 %

4 background loads
4 4.84 1.51 2 75.4 %

Table 20.2. Absolute run times and speed-up values for knary(4, 10, 1000) and up
to four background loads

It is clearly visible that MuSE is able to balance the load even when the
processing performance of the nodes is uneven. However, when the number
of background processes increases, less and less of the offered throughput can
be utilized. This can be attributed to the uncoupled Linux schedulers which
are bound to impede communication among the nodes more than necessary:
while node A sends a request to node B, the latter is no longer being executed,
forcing node A to wait for the next time slice of B.

Running more realistic SISAL applications unfortunately requires further
tuning of the current prototypical and mostly C macro-based runtime system
mechanisms. Additionally, an efficient compound data handling facility is im-
portant in order to allow MuSE graphs to perform array accesses with the
same references regardless of the node on which they are executed. Unfor-
tunately, the prevailing implementation of MuSE’s compound data handling
suffers from significant overheads that prevent actual application speed-up.
This work therefore only covers synthetic benchmarks that nevertheless re-
present typical model cases.

362 M. Leberecht

20.4 Related Work and Conclusion

The MuSE and Cilk execution models seem similar on the first glance as both
employ fine-grained non-blocking threads, both use hierarchical work stealing,
and both employ dataflow mechanisms for easy self-scheduling. However, they
differ in a specific point. In general, load balancing actions usually introduce
overhead due to two tasks: decomposition costs for setting up independent
activities and load migration costs for transporting an activity to a different
node. While Cilk couples both actions and exhibits their costs even when
decomposition might not be necessary, MuSE attempts to keep them apart.

While in Cilk on-heap execution is the only and default execution mode,
MuSE’s default paradigm lets execution run on the stack and only swit-
ches back to on-heap execution when demanded. In other words, it means
that decomposition cost for parallel execution in Cilk is implicitly hidden in
the execution model and proportional to the number of Cilk threads being
spawned—even for the sequential case in which this would not be necessary—
while MuSE’s costs for generating parallelism are made explicit by mode
changes due to work-stealing or fairness demands. This also means that Cilk’s
good speed-up values are achieved partly due to a non-optimal sequential
version while MuSE exhibits the fairer comparison: decomposition into con-
current active entities, the MuSE graphs with their contexts, only occurs
when it is really necessary. In Cilk, only load migration cost has to be offset
by the performance improvement while MuSE has to offset both costs.

Runtime systems suitable for fine-grained parallelism have to be efficient
when supporting sequential as well as parallel programs. They thus have
to overcome the difficulty of trading off efficient on-stack execution modes
against more flexible but less lightweight on-heap execution modes. Several
methods for this have been presented so far:

– The Lazy Threads project [6] attempts to amortize heap allocation overhead
by utilizing stacklets, independent and fixed-size chunks of heap space ser-
ving as stack for intermediate sequential execution. On stacklet overrun
or a spawn operation, new stacklets are allocated, thus requiring static
knowledge about when to spawn and when to call.
In Lazy Threads, the decision about spawning and calling is non-reversible
and has to be made at compile-time. MuSE in contrast offers a truly trans-
parent model with the possibility to change execution modes at any time
during the application’s run.

– The StackThreads approach [12] defaults to sequential on-stack execution.
In case of a spawn operation, a reply box in the calling thread serves as the
point of synchronization for the spawned thread and its caller, blocking
the caller until the spawned thread has completed.
MuSE advances beyond StackThreads by not necessarily blocking a higher
level activity as soon as a procedure has been spawned. Intra-graph par-
allelism through threads ensures that all ready execution can proceed on

20. The MuSE Runtime System for SCI Clusters 363

the stack while in StackThreads a single blocking operation always blocks
an entire call tree.

– In the Concert system [10], differently compiled versions of the same code
supporting calling as well as spawning are utilized dynamically.
In contrast to Concert, MuSE’s method requires only a single object code,
avoiding the storage overhead of multiple versions.

MuSE thus offers distinct advantages over these described runtime sy-
stems. Unfortunately, its prototype implementation suffers from a number of
inefficiencies. C macros that are used to implement certain runtime system
functions and to enhance manual readability are not flexible enough for the
presented purpose. They do not perform sufficiently well to allow for even
more fine-grained parallelism and realistic dataflow applications. Although
this is no actual surprise, the macros behaved interestingly well as a testbed
for the presented mechanisms. Machine-level implementations of the runtime
mechanisms, however, seem more appropriate as well as using more com-
piler knowledge to resort to less general and more optimized functionality
whenever possible.

In essence, the MuSE system shows that although high-performance net-
works such as SCI pose significant challenges for the runtime environment
of clustered architecture, they can nevertheless be dealt with in a flexible
and transparent way for application and runtime services, thanks to SCI’s
memory transaction-oriented nature.

References

1. G. Acher, H. Hellwagner, W. Karl, and M. Leberecht. A PCI-SCI Bridge for
Building a PC Cluster with Distributed Shared Memory. In Proc. 6th Internatio-
nal Workshop on SCI-Based High-Performance Low-Cost Computing, SCIzzL,
Santa Clara, CA, September 1996.

2. R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. In Proc. 35th Annual Symposium on Foundations of Computer
Science (FOCS ’94), pages 356–368, Nov. 1994.

3. D. C. Cann. The Optimizing SISAL Compiler: Version 12.0. Technical Report
UCRL-MA-110080, Lawrence Livermore National Laboratory, April 1992.

4. M. Eberl, H. Hellwagner, W. Karl, M. Leberecht, and J. Weidendorfer. Fast
Communication Libraries on an SCI Cluster. In A. Reinefeld and H. Hellwagner,
editors, Scalable Coherent Interface: Technology and Applications (Proc. SCI-
Europe ’98), pages 165–175, Cheshire Henbury, September 1998.

5. P. Färber. Execution Architecture of the Multithreaded ADAM Prototype. PhD
thesis, Eidgenössische Technische Hochschule, Zürich, Switzerland, 1996.

6. S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads: Implementing
a Fast Parallel Call. Journal of Parallel and Distributed Computing, 37(1):5–20,
August 1996.

7. H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High-
Performance Computing. SPEEDUP Journal, June 1997.

364 M. Leberecht

8. M. Ibel, K. E. Schauser, C. J. Scheiman, and M. Weis. High-Performance
Cluster Computing Using Scalable Coherent Interface. In Proc. 7th Workshop
on Low-Cost/High-Performance Computing (SCIzzL-7), SCIzzL, Santa Clara,
CA, March 1997.

9. A. M. Mainwaring and D. E. Culler. Active Messages: Organization and Ap-
plications Programming Interface. Tech. Report, Computer Science Division,
University of California at Berkeley, 1995.
http://now.cs.berkeley.edu/Papers/Papers/am-spec.ps.

10. J. Plevyak, V. Karamcheti, X. Zhang, and A. Chien. A Hybrid Execution Model
for Fine-Grained Languages on Distributed Memory Multicomputers. In Proc.
1995 ACM/IEEE Supercomputing Conference, ACM/IEEE, December 1995.

11. S. Skedzielewski and J. Glauert. IF1 - An Intermediate Form for Applicative
Languages. Technical Report TR M-170, Lawrence Livermore National Labo-
ratory, July 1985.

12. K. Taura, S. Matsuoka, and A. Yonezawa. StackThreads: An Abstract Machine
for Scheduling Fine-Grain Threads on Stock CPUs. In T. Ito and A. Yonezawa,
editors, Proc. International Workshop on the Theory and Practice of Parallel
Programming, volume 907 of Lecture Notes of Computer Science, pages 121–136,
Springer Verlag, November 1994.

Part VII

Benchmark Results and Application
Experiences

How much does a parallel application benefit by using SCI rather than a
simple LAN? Is it really feasible to turn a collection of standard PCs into
a dedicated high-performance computer just by interconnecting them with
SCI? And how about the usability of such systems? Can they be reliably
deployed in harsh multi-user environments, or are they restricted to specific
applications?

This part has three chapters dealing with questions like these—and three
different answers:

– the first one from a computer scientist’s point of view, who is trained to
assess a system’s performance with a set of carefully selected synthetic
benchmarks;

– the second one from an end-user’s point of view, who seeks maximum
performance for his/her specific application; and

– the third one from a physicist’s point of view, who poses extremely high
demands on the communication system needed for the real-time filtering
of data gathered in high-energy physics experiments.

In Chapter 21, researchers from Paderborn Center for Parallel Compu-
ting (PC2) report on their experiences gained in the design, installation, and
operation of two very large SCI clusters. With 64 and 192 Intel Pentium
II processors, respectively, these systems are not treated as exotic systems
for selected users, but they are operated in the hard environment of every-
day general-purpose multi-user computing. In their paper, the authors from
Paderborn report on the decisions they took in the design of the system
architecture, on their practical experiences and on performance results obtai-
ned with benchmark programs like Linpack, FFT, and HINT, and with real
applications from three different domains.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 365-366, 1999
© Springer-Verlag Berlin Heidelberg 1999

366 Benchmark Results and Application Experiences

Chapter 22 focuses on experiences gained at RWTH Aachen in porting
and benchmarking a complex molecular dynamics code on an SCI cluster
with eight Intel PentiumPro machines. This project is seen as part of a larger
effort in studying parallelization methods for non-uniform memory access
(NUMA) systems. In this specific case, the important molecular dynamics
code GROMOS-87 has been ported to an SCI cluster using the shared me-
mory interface SMI developed by the researchers in Aachen (see Chapter
16).

Chapter 23 finally shows that there are more uses to SCI than just general
purpose cluster computing. Researchers at CERN, Rutherford Appleton Lab,
Argonne National Lab, and the University of Manchester are currently testing
the usability of SCI in the context of high-energy physics experiments. In the
ATLAS experiment, for example, SCI is planned to be used in the second-
level trigger in the Large Hadron Collider (LHC) at CERN, which will allow
scientists to penetrate deeper into the structure of matter than has previously
been possible. Based on their current 16-node dual-Pentium system and a 16-
port SCI switch, the CERN researchers prepare a technical proposal for the
large ATLAS high-level trigger system.

21. Large-Scale SCI Clusters in Practice:
Architecture and Performance

Jens Simon1, Alexander Reinefeld1, Oliver Heinz2

1 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany
email: simon@zib.de, ar@zib.de
http://www.zib.de/

2 Paderborn Center for Parallel Computing, D-33102 Paderborn, Germany
email: heinz@upb.de
http://www.upb.de/pc2/

21.1 Introduction

The Paderborn Scalable Compute Server (PSC Server) is a prototype of a
commercial product that has been installed in 1997/98 by a vendor consor-
tium consisting of Siemens AG and Scali Computer AS at the Paderborn
Center for Parallel Computing. It builds on the COTS concept, that is, on
the use of common off-the-shelf technology.

After extensive stability and performance tests, PSC Servers of various
sizes are now marketed by Siemens under the brand name hpcLine. They
provide truly scalable computing power ranging from a few GFlop/s with
small clusters up to more than a hundred GFlop/s on high-end systems with
several hundred Intel processors.

In this chapter, we report on the experiences gained with two large-scale
installations with 64 and 192 Intel Pentium II processors, respectively. We
give results on low-level benchmarks as well as real-world applications. While
the results are still preliminary (because the system is subject to further opti-
mizations) they provide valuable insights in the characteristics and useability
of large dedicated compute clusters with standard off-the-shelf PC-technology
and SCI interconnect.

21.2 PSC System Architecture

Apart from several small systems with various hardware components for
testing purposes, we operate two large-scale SCI compute servers at our in-
stitute, both containing Siemens multiprocessor PCs and Dolphin PCI/SCI
adapter cards. Their different hardware specification (300 MHz versus 450
MHz Intel Pentium II) reflects the technological advance between their in-
stallation dates in 1997 and 1998 respectively. But also their physical appea-
† The work presented in this chapter was done while all three authors were at

Paderborn Center for Parallel Computing, http://www.upb.de/pc2

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 367-381, 1999
© Springer-Verlag Berlin Heidelberg 1999

368 J. Simon, A. Reinefeld, O. Heinz

Fig. 21.1. PSC-64 front- and backside view

Fig. 21.2. PSC-192, also available as Siemens hpcLine

rance is quite different: The smaller system contains standard PC boxes that
are simply stacked on top of each other in four cabinets (Figure 21.1), while
the larger system contains just the PC motherboards without boxes in six
cabinets (Figure 21.2). This was necessary, because the SCI technology used
in our system does not allow for cable lengths of more than a few meters.
Also, by removing unnecessary PC components (such as CD drives, disket-
tes, graphic cards, etc.) we were able to reduce the cooling effort and power
consumption.

21.2.1 Node Configuration

PSC-64 contains a total of 32 Siemens Celsius PCs, each of them with a
dual Intel Pentium II motherboard with BX chip-set, 256 MByte SDRAM,
a local disk drive and an LC2-based PCI/SCI interface card. The 300 MHz

21. Large-Scale SCI-Clusters in Practice 369

PSC-64 PSC-192

node 32 Siemens Celsius 96 Siemens Primergy
processor 64 Intel Pentium II 192 Intel Pentium II

300 MHz 450 MHz
chip-set Intel 440 BX Intel 440 GX
DRAM 8 GByte 48 GByte
network extended PCI/SCI LC2 interface cards the same

500 MByte/s uni-directional the same
4 × 8 torus 8 × 12 torus

peak perf. 19.2 GFlops 86.4 GFlops

Table 21.1. PSC-64 and PSC-192 hardware configuration

processors are clock-locked by a multiplier of 4.5, resulting in a system bus
frequency of 66 MHz.

Before deciding on the system components, we have evaluated about half a
dozen Intel chip-sets for their utilization of the PCI bus [16]. In our tests, the
Intel 440 BX and 440 GX chip-sets gave best results on the 32-bit PCI/SCI
adapter cards with 33 MHz. Other chip-sets, like Intel 440 LX, for example,
do not adequately support the PCI bus. Also the Orion chip-set, which was
commonly used in the Intel quad-board (4-way processor) systems, provided
very poor throughput (i.e. less than 25 MByte/s). This prompted us to give
up our initial plans to build a cluster with quad-board systems. The quad-
board PCs are now employed as front-end systems for the cluster. They are
not connected to the SCI ringlets, but act as gateways between the PSC’s
Fast Ethernet and our institute’s backbone network.

The PSC-192 system, which was installed one year later, has a similar
architecture but with improved hardware components (Table 21.1). It con-
sists of 96 Siemens Primergy servers, each equipped with two 450 MHz Intel
Pentium II with 440 GX chip-set, 512 MByte of main memory and a local
hard disk drive. With its 100 MHz bus frequency and the increased CPU
clock rate of 450 MHz, a PSC-192 node is in practice about 50% faster than
a PSC-64 node.

21.2.2 SCI Interconnect

The PSC Servers contain 4th generation PCI/SCI adapter cards (D308 re-
vision D) that have been designed by Scali Computer AS for large clusters.
They are based on Dolphin’s CluStar PCI technology (PCI/SCI card D310),
but have an additional connector for card extensions to a so-called Mezza-
nine board with an additional link controller. The two link controllers and
the PCI/SCI bridge (PSB) are connected via an internal B-link bus. Thus,

370 J. Simon, A. Reinefeld, O. Heinz

the two link controllers of a node can be used to build a 2D torus, where each
node is connected to an x- and y-ringlet, giving a distributed switch.

With a maximal cable length of two meters (parallel copper), the SCI
link speed is set to 500 MByte/s. For reliable communication over longer di-
stances, we have also experimented with a reduced link speed of 400 MByte/s.

21.2.3 Software Configuration

The PSC Servers are operated in multi-user mode under Solaris, Linux or
Windows NT. Multi-user mode is implemented by logically linking compute
nodes to the user’s partitions. In principle, it is even possible to run different
operating systems on different partitions at the same time. With this opera-
ting mode, all resources local to a node are managed by the local operating
system. For the benchmark results presented here, we have used Solaris X86.

operating systems Solaris X86, Linux, Windows NT
message passing libraries ScaMPI, Active Messages, PVM
shared memory libraries Yasmin
compilers pgcc, pgCC, pgf77, gcc, g++, g77
math libraries ScaLAPACK
program development TotalView, Vampir, SProf
resource management CCS

Table 21.2. PSC software configuration

Table 21.2 shows the PSC software configuration. The message passing
environments MPI and PVM come in two versions, one taking full advantage
of the SCI interconnect (ScaMPI, see Chapter 14) and the other running
on Fast Ethernet (MPICH). For shared memory applications, the Yasmin
environment [4] provides a programming interface for shared memory regions,
semaphores and other synchronization mechanisms.

Both clusters are operated under the resource management system CCS
(Chapter 26) which provides system administration facilities and user-friendly
system access with a variety of schedulers for interactive, batch, or mixed
operation modes.

For the fine-tuning of application codes we have implemented the SProf
toolset [15] which helps to determine performance bottlenecks, especially in
the memory hierarchy (L1 and L2 caches) of large parallel systems.

21. Large-Scale SCI-Clusters in Practice 371

21.3 Standard Benchmarks

21.3.1 Low-Level MPI Benchmarks

Low-level benchmarks are used to characterize the performance of basic buil-
ding blocks (processor, memory, disk, network), computing nodes or com-
plete HPC systems. In a first test series we have run an MPI ping-pong
benchmark to measure the communication latency and bandwidth between
arbitrary pairs of nodes. As usual, we define latency as half of the time nee-
ded to transfer a zero-length message between a sender and a receiver back
and forth. The effective bandwidth is determined with the same ping-pong
test, but using various message sizes.

Two communication modes have been measured, a uni-directional data
transfer that utilizes only one communication direction of a link at a time
and a bi-directional communication with simultaneous data transfers in both
directions.

Communication Latency. The latency histogram in Figure 21.3 shows an
average latency of 18.7μs with some small variance due to sporadic activities
of the nodes’ operating systems. Interestingly, on an unloaded network we
found the latency to be almost independent of the positions of the communi-
cation partners. No significant time delay was observed when changing from
an x- to a y-ringlet or vice versa.

0

100

200

300

400

500

600

15 20 25 30 35 40 45 50

nu
m

be
r

time (usec)

message size = 0 byte
min. val = 17.5

avrg. val = 18.7
max. val = 48.0
variance = 5.7

reps. = 1000

Fig. 21.3. Communication latency of ScaMPI on PSC-64

Using MPICH on the same nodes but with Fast Ethernet gave a ten to
twenty times higher latency (250 to 400μs). This must be attributed to the
slower communication speed on the shared medium, to the TCP/IP protocol
stack, and to the non-optimal, but portable MPICH implementation.

372 J. Simon, A. Reinefeld, O. Heinz

0

20

40

60

80

100

10 100 1000 10000 100000 1e+006

M
B

yt
e/

s

message size in bytes

1.)

2.)

1.) bidirectional (max.)
 " (average)

2.) unidirectional (max.)
 " (average)

Fig. 21.4. Point-to-point ScaMPI communication on PSC-64

0

20

40

60

80

100

10 100 1000 10000 100000 1e+006

M
B

yt
e/

s

message size in bytes

1.)

2.)

1.) bidirectional (max.)
 " (average)

2.) unidirectional (max.)
 " (average)

Fig. 21.5. Point-to-point ScaMPI communication on PSC-192

Communication Bandwidth. Figures 21.4 and 21.5 show the best and aver-
age communication bandwidth of several thousand test runs on PSC-64 and
PSC-192. Caching effects and the three different ScaMPI transport protocols
for various message sizes [13] gave the characteristic curves. Notice that in
the uni-directional case, the maximum and average performance curves are
closer together. With bi-directional communication, we spotted many more
test instances with bad performance (possibly due to message transfer con-
flicts on the SCI ringlets). As before, the 45 MByte/s uni-directional and
65 MByte/s bi-directional bandwidth with ScaMPI on PSC-64 is an order of
magnitude higher than that of MPICH on Fast Ethernet (5 to 7.5 MByte/s).
On PSC-192, we have measured 64 and 82 MByte/s, respectively, both with
a marginally lower communication latency.

21. Large-Scale SCI-Clusters in Practice 373

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100

m
ic

ro
se

co
nd

s

number of nodes

Fig. 21.6. Barrier synchronization time on PSC-192

Barrier Synchronization. Figure 21.6 shows the performance of MPI barrier
synchronization on various groups of up to 96 nodes. All data points have
been averaged over several thousand trials because there is a high variance
in the measured synchronization times. In practice, the time required for one
single barrier cannot be predicted, especially when a large number of nodes
is involved. This is because of spontaneous activities of the nodes’ operating
systems.

21.3.2 Parallel Linpack

The parallel Linpack benchmark [5, 6] is commonly used as a yardstick to
measure the performance of the world’s fastest supercomputers. The task is
to solve a dense system of linear equations as fast as possible. In contrast to
many other benchmarks, the implementor may choose any suitable algorithm
and problem size. New Linpack results are published twice a year [7].

We have implemented a variant of the standard Gaussian elimination with
partial pivoting. The n × n matrix is mapped onto the mesh of nodes with
the classical data distribution scheme, generally referred to as a two dimen-
sional block-wrapped, or block-cyclic, matrix decomposition. The operations
on the b × b sub-matrices provide a good system utilization, including the
complete memory hierarchy in the nodes. Moreover, the data distribution
gives an almost perfect static work-load balance over the nodes. The load
balancing between the two processors of a node is done by multi-threading.
Two computation threads for the elimination task, one thread per processor,
are controlled by an intelligent scheduling instance to keep them busy as long
as possible. A couple of other threads are used to handle communication and
update processes. For more details on our algorithm, see [17].

The matrix-matrix multiplication in the solution of the dense system of
equations can be performed at 320 MFlop/s when using both CPUs of a
node. Due to an implicit synchronization of the nodes during the search of

374 J. Simon, A. Reinefeld, O. Heinz

no. of mesh Overall Overall Linpack matrix
CPUs size LU perf. Linpack perf. per dimension

perf. node
(MFlop/s) (MFlop/s) (MFlop/s) (n)

64 8 × 4 7859 7811 244 27392
48 6 × 4 5685 5658 236 23808
32 4 × 4 4009 4003 250 19328
16 4 × 2 2042 2037 255 13952

Table 21.3. Parallel Linpack performance on PSC-64

a pivoting element in the rows of the matrix, the parallel Linpack program
looses about 10% in efficiency. As can be seen in table 21.3, the efficiency
drops by 4% when increasing the number of processors by a factor of 4.

21.3.3 FFT Benchmarks

FFTW is a C subroutine library [8] for computing the Discrete Fourier Trans-
formation (DFT) in one or more dimensions—of both real and complex
data—and of arbitrary input size. The performance of FFTW is reported
in terms of “MFLOPS” for various transform sizes n, see Figure 21.7. Note
that this MFLOPS rate is not directly comparable to the commonly used
MFlop/s performance. It is rather an abstract performance measure, defined
as 5 log2 N/(time of an FFT).

0

50

100

150

200

250

300

1 10 100 1000 10000 100000 1e+06

M
F

LO
P

S

n

FFTW
Frigo-old

Ooura
Krukar

FFTPack

Fig. 21.7. FFT on a single PSC-64 node

The FFTW library is available for single processor systems, shared
memory-, and distributed memory systems. We have chosen the MPI va-

21. Large-Scale SCI-Clusters in Practice 375

riant. Figure 21.8 shows the speedup of the transposed FFT of a 3D matrix
on 1 to 32 nodes, that is, on 2 to 64 processors. With ScaMPI, we measured
an efficiency of 60% with a problem size of only 2403 on 32 nodes. While lar-
ger problem sizes yield better results, we have chosen this small size because
it fits into the memory of a single node.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
pe

ed
up

number of nodes

240^3
200^3
180^3
160^3
128^3

64^3
24^3

Fig. 21.8. FFTW on PSC-64 for various matrix sizes

21.3.4 HINT Benchmark

HINT or Hierarchical INTegration is a benchmark tool from Ames Labo-
ratory [9] to gauge the overall performance of a variety of computers. The
HINT benchmark fixes neither the problem size nor the execution time of
the problem to be solved. It measures the performance of a computer across
all memory levels (caches, main memory, swap space, etc.). The benchmark
uses interval subdivision to find upper and lower bounds of the function
f(x) = (1 − x)/(1 + x) using only the monotone decreasing property of the
function. Quality is defined as the reciprocal of the difference between the
upper and lower bounds. At each time step the quality improvement is cal-
culated with respect to the time spent for the calculation. The output of the
benchmark is a graph of QUality Improvements Per Seconds (QUIPS) over
the memory used for the calculation. NetQUIPS summarizes the QUIPS over
time.

Figure 21.9.a shows the HINT performance plot for different data sizes
and types on a single processor. With 32-bit integer we measured a per-
formance value of 14.38 MQUIPS and with 64-bit floating point it has 10.74
MQUIPS. Note that these performance values are single numbers that include

376 J. Simon, A. Reinefeld, O. Heinz

�

� / �

� / �

� / �

� / 	

� / �

� / �

� / �

� / �

� / 	

� / �

� / �

� / �

� 0 � � � � 0 � 1 � � 0 � 	

�
2
3
%!
�

- � - � � �
 � ,
 * � � �

� � # * � �
 4 � ' � � , �
� � # * � �
 4 � ' � � , �
� � # * � �
 % , � � � � �
� � # * � �
 % , � � � � �

�

� / �

� / �

� / �

� / 	

� / �

� / �

� / �

� / �

� / 	

� / �

� / �

� 0 � � � � 0 � 1 � � 0 � 	
�
2
3
%!
�

- � - � � �
 � ,
 * � � �

�
 $! 3
�
 $! 3

Fig. 21.9. a.) Sequential HINT performance on one CPU for different data types
b.) MPI implementation of HINT on a single node using one or two CPUs with
double precision floating-point data

the system performance of the whole memory hierarchy, i.e. the performance
values (measured in MQUIPS) are given by the integral of the curves.

On parallel systems, the HINT benchmark uses domain decomposition to
distribute the function domain. Each processor calculates a scattered portion
of the domain. Figure 21.9.b shows the parallel HINT on a node with one
(9.75 NetMQUIPS) or two processors (15.54 NetQUIPS) for double precision
floating-point operations1.

21.4 Applications

Complementing the described low-level benchmarks, we have run a number
of practical applications on the PSC Servers. In this section, we report on the
performance of a preconditioned CG solver with domain decomposition, an
application for protein structure comparison and a parallel chess program.

Numerical Flow Simulation. In numerical flow simulation there are many
methods for solving the Navier-Stokes equation. Splitting schemes result in
linear and non-linear systems of equations. We examined the linear case for
solving the pressure correction step, which is described by a mixed boundary
value Poisson problem [2]

−Δu(x, y) = f(x, y) in Ω (21.1)
u(x, y) = 0 on ∂Ω

1 For comparison, HINT results with other systems can be found on
http://www.scali.com/html/performance.html

21. Large-Scale SCI-Clusters in Practice 377

Classical methods for solving this kind of equations, like Conjugate Gradi-
ent (CG), Jacobi, or Gauss-Seidel solvers are inefficient, because the number
of iterations depends on the space step-size of the discretized domain. The-
refore preconditioned conjugate gradient methods or multigrid methods are
used. Both have their specific advantages. In the case of adaptive mesh re-
finement we use a preconditioned conjugate gradient method with domain
decomposition (DD-PCG).

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

M
F

lo
p/

s
pe

r
no

de

number of nodes

T3E-900

PSC-192 SCI

PSC-192 FE

Fig. 21.10. Performance comparison of a DD-PCG solver on a Cray T3E-900 and
the PSC-192 with SCI and Fast Ethernet (FE)

The graphs in Figure 21.10 show the scalability of the conjugate gradient
boundary iteration method [2, 3] solving equation 21.1 on a fixed domain
Ω = [0, 2] × [0, 1]. The same DD-PCG solver code has been run on

– PSC-192 with ScaMPI on SCI
– PSC-192 with MPICH on Fast Ethernet (up to 32 nodes)
– SGI/Cray T3E-900 with Cray MPI running on 450 MHz DEC Alpha 21164

processors and 128 MByte main memory per node

Figure 21.10 shows the scaled application performance, i.e. the application
input is scaled up with the nodes and the available user memory. The same
DD-PCG solver (≈ 70 MByte user memory per node) has been run on the
T3E and the PSC-192. The performance is given in MFlop/s per processor
relative to the number of operations of the sequential algorithm. Hence the
data points also show the scalability of this specific implementation.

While both systems have the same nominal peak performance of 900
MFlop/s per node, their sustained performance differs quite substantially.
This is attributed to the optimized memory interface of the T3E for strea-

378 J. Simon, A. Reinefeld, O. Heinz

nodes SCI Fast Ethernet
2 1.5 1.4
4 2.6 2.4
8 4.7 3.4
16 9.0 7.7

Table 21.4. Speedup results for MSAP on PSC-64

med memory accesses. The PC components used in the PSC-192, in contrast,
have a standard memory hierarchy (L1-, L2-cache, main memory) with no
hardware support for consecutive memory fetches from main memory. Hence,
we found it more efficient to use only one PSC processor for the computation,
while the second processor is used exclusively for communication. When using
both processors in a node, the memory bandwidth becomes a bottleneck in
this kind of application.

More important than the absolute node performance is the scalability
of the DD-PCG solver on the two systems. Note that both curves are of
almost flat, indicating an almost perfect scalability for up to 96 nodes! The
communication latency (16 μs over MPI) is nearly the same on both systems,
whereas the communication bandwidth of the T3E is about twice as high as
that of SCI. Moreover, each T3E node may communicate simultaneously in
all three directions of the 3D torus, while a PSC node can only serve one
communication ring at a time.

The lower graph shows the MPICH version running on Fast Ethernet.
Clearly, the application does not scale due to insufficient communication per-
formance.

Protein Structure Comparison. As another example for a practical applica-
tion, we have run MSAP, a parallel variant of SAP [18] which is used in
rational drug design for the comparison of tertiary structures of proteins.
MSAP identifies the similarity of a given protein model—which may have
been obtained by computer simulations or by experiments—to all known
protein structures in a database. When some similarity has been found, this
usually gives information on the function of the unknown protein, as the
function of almost all proteins with experimentally determined structure is
known.

MSAP is implemented in C++/MPI and has been compiled for ScaMPI
on SCI and MPICH on Fast Ethernet. Both variants have been run on PSC-
64 with up to 16 nodes. Up to four nodes, both variants scale nearly identical
(Table 21.4). With 16 nodes, the relative speedup on SCI is 9.0, while the
variant running on Fast Ethernet provides a 15% lower speedup.

Computer Chess. Game playing programs are often seen as excellent bench-
marks for the efficiency of parallel systems, because they are

– CPU bound, because the score of each node in the look-ahead tree must
be assessed with a complex evaluation function,

21. Large-Scale SCI-Clusters in Practice 379

– memory bound, because it is faster to store previously evaluated nodes in
a large transposition tables than to re-evaluate them when they are needed
again,

– communication bound, because the transposition table is distributed over
the parallel system and table accesses must be fast enough to vindicate the
effort.

Chess programs build a large decision tree when exploring all possible
moves and their consequences. Even with modern pruning techniques, the
tree size grows exponentially with the exploration depth so that only a section
of the game tree can be searched.

In our benchmark suite, we have used the chess program ConNerS [11]
which employs a non-classical technique for incremental strategic search, cal-
led “Controlled Conspiracy Number Search”. Depending on the number of
processors, ConNerS plays at a Grandmaster level. On a small (ten proces-
sor) SUN UltraSPARC II with 300 MHz, for example, ConNerS has a rating
of approximately 2580 Elo points.

Again, we compared a ScaMPI and an MPICH variant on PSC-64 . With
32 processors, the SCI variant of ConNerS gave a 16.7-fold speedup while
Fast Ethernet provides a factor of only 9.8. This is attributed to the many
small messages sent by ConNerS, where a small communication latency is of
prime importance.

For another cross-check, we have run ConNerS on a Parsytec CC-48 with
40 PowerPC 604 processors clocked at 133 MHz. Each processor is connected
to a 1 GBit/s HS-link with a fat mesh of Clos topology. On this system, we
were also able to achieve a 50% efficiency on 40 processors, but with a much
lower overall performance due to the inferior PowerPC 604 processors. As
a result, the whole Parsytec CC-48 with 40 processors is only four times as
fast as a SUN UltraSPARC II with 300 MHz. Each Intel Pentium II in the
PSC-64, in contrast, as about the same performance as an UltraSPARC.

21.5 Summary

In this chapter, we have presented first empirical results on the operation
of two high-performance compute servers with standard Intel processors and
SCI interconnect, one with 32 off-the-shelf PC-boxes and the other with 96
motherboards with server components. It seems that the use of common
off-the-shelf technology (COTS) is a very viable alternative to dedicated
hardware—even in the field of high-performance parallel computing. Both,
the computing and the communication performance of the PSC Servers is
comparable to that of dedicated HPC systems, but at a much lower cost.

Even more important, a multitude of well-engineered and practice-proven
software packages is available for COTS. As an example, we run three popular
operating systems (Linux, Solaris, and Windows NT) on our PSC Servers.

380 J. Simon, A. Reinefeld, O. Heinz

However, the use of full-fledged operating systems on the single nodes has
also disadvantages too: The operating system takes much memory space on
each node and, more important, undesirable side-effects (UNIX watchdog,
automounter, etc) may slow down the overall system performance, especially
when performing group communication.

Also, some difficulties remain with the resource management of such clu-
sters. Currently, users have the alternative between standard cluster ma-
nagement software (e.g. LSF, Codine, Condor) and our Computing Center
Software CCS (Chapter 26). Aiming primarily at high-throughput compu-
ting on loosely coupled clusters, the cluster management software does not
fully exploit the capabilities of dedicated SCI servers, while CCS is still a
university product without commercial support.

Acknowledgments

Special thanks to Stefan Blazy, Jan Hungershöfer, Max Ibel (UBC), Ulf Lo-
renz, and Jens-Michael Wierum for providing valuable information on the
applications and for supporting our work so generously. Also thanks to Scali
Computer for providing us with the latest version of their ScaMPI software.

References

1. D. Bailey, J. Barton, T. Lasinsk, and H. Simon. The NAS Parallel Benchmarks.
Technical Report RNR-91-002 Revision 2, 1991.

2. S. Blazy, W. Borchers, and U. Dralle. Parallelization methods for a characte-
ristic’s pressure correction scheme. In: H. Hirschel (ed.): Flow Simulation with
High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 38,
Braunschweig, Germany, Vieweg-Verlag, 1996.

3. J.H. Bramble, J.E. Pasciak, and A.H. Schatz. The construction of preconditio-
ners for elliptic problems by substructuring I., Math. Comput. 47, pp. 103-134,
1986.

4. R. Butenuth and H.-U. Heiß. Shared memory programming on PC-based SCI
clusters. Procs. of the SCI Europe’98, Bordeaux, France, 28.-30. Sept. 1998.

5. J.J. Dongarra. The LINPACK benchmark: An explanation. Evaluation in Su-
percomputers, Chapman and Hall, 1990, pp. 1–21.

6. J.J. Dongarra. Performance of Various Computers Using Standard Linear
Equations Software. Technical Report CS-89-85, University of Tennessee,
http://www.netlib.org/benchmark/performance.ps.

7. J.J. Dongarra, H.W. Meuer, and E. Strohmaier. Top500 Supercomputer Sites.
http://www.netlib.org/benchmark/top500.html.

8. M. Frigeo, and S.G. Johnson. FFTW: An adaptive software architecture for the
FFT. http://theory.lcs.mit.edu/∼fftw/, ICASSP 98, 1998.

9. J.L. Gustafson and Q.O. Snell. HINT: A New Way
To Measure Computer Performance. Ames Laboratory,
http://www.scl.ameslab.gov/Personnel/john.html, 1995.

10. O. Heinz and J. Simon. SCI multiprocessor PC cluster in a WindowsNT envi-
ronment. Supercomputer Journal, (68, XIII-2), 1997.

21. Large-Scale SCI-Clusters in Practice 381

11. U. Lorenz and V. Rottmann. Parallel Controlled Conspiracy Number Search.
Advances in Computer Chess 8, pp. 135–147, 1997.

12. NASA Ames Research Center: The NAS Parallel Benchmarks.
http://science.nas.nasa.gov/Software/NPB/

13. Scali Computer: ScaMPI User’s Guide. 1997.
14. Scali Computer: SCALI Affordable Supercomputing. http://www.scali.com/
15. J. Simon, R. Weicker, and M. Vieth. Workload Analysis of Computation Inten-

sive Tasks: Case Study on SPEC CPU95 Benchmarks. Euro-Par’97, Springer
LNCS 1300, 1997, pp. 971–984.

16. J. Simon and O. Heinz. Experiences with a SCI Multiprocessor Workstation
Cluster. ARCS’97, VDE-Verlag 1997, pp. 189–199.

17. J. Simon and J.-M. Wierum. Sequential Performance versus Scalability: Opti-
mizing Parallel LU-Decomposition. HPCN’96, Springer LNCS 1067, 1996, pp.
627–632.

18. W.R. Taylor, T.P. Flores, and C.A. Orengo. Multiple Protein Structure Alig-
nment. Protein Science, vol. 3, 1994, pp. 1858–1870.

22. Shared Memory Parallelization of the
GROMOS96 Molecular Dynamics Code

Marcus Dormanns

RWTH Aachen, Lehrstuhl für Betriebssysteme, Kopernikusstr. 16,
D-52056 Aachen, Germany
email: contact@lfbs.rwth-aachen.de
http://www.lfbs.rwth-aachen.de/

22.1 Introduction

This chapter describes the parallelization of GROMOS96, a molecular dyna-
mics simulation code, on SCI-interconnected cluster architectures.

The simulation of the dynamics of molecular systems is one of the central
topics in scientific high-performance computing. It has been subject to paral-
lel processing already for a long time. GROMOS96 [16] is a well-known code
in this area with a quite long history. It is the successor of GROMOS87, which
has been re-designed for improved functionality and performance, including a
parallel implementation for shared memory Silicon Graphics multiprocessors
[7].

Due to its irregular and time-varying data structures that are processed
by different algorithms, this code is well suited to discuss several aspects
of application parallelization on the considered cluster platform. The work
presented here is part of a larger application parallelization project [13] that is
concerned with codes from different areas, e.g. a module of a decision support
system [4], an acoustics simulation code [15] and earthquake simulation [14].

The parallelization of GROMOS96 exploits the shared memory capabili-
ties of the SCI cluster platform via the Shared Memory Interface (SMI; see
[5] and Chapter 16) parallelization library. Developing techniques for NUMA
shared memory parallelization is an interesting subject because most of the
recent small to medium size parallel systems provide a (logical) shared address
space (e.g. SGI Origin, HP Exemplar, Data General AViiON NUMALiiNE,
Sun Enterprise server and Sequent NUMA-Q). Today, there exist only few
purely distributed systems (e.g. IBM SP2) which mainly target at the very
high-end market and therefore represent a different class of machines than
cluster systems.

Section 22.2 provides some more information about GROMOS96 and its
code structure. In Section 22.3, two different aspects of the GROMOS96
parallelization are described: The first one concerns the overall principles and
software engineering issues, while the second one sketches the parallelization
of the kernel algorithms. Section 22.4 then discusses the resulting performance

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 383-396, 1999
© Springer-Verlag Berlin Heidelberg 1999

384 M. Dormanns

and compares it to similar parallelization efforts. Finally, some conclusions
are drawn in Section 22.5.

22.2 The GROMOS Code

22.2.1 General Code Characteristics

The purpose of molecular dynamics simulation is to track the dynamics of
a molecular ensemble over time whose individual atoms interact via several
types of forces. Depending on the concrete application, results of interest are
the particles’ trajectories (or time-evolving quantities that can be computed
from them) as well as the final configuration.

The whole software package consists of several programs. Besides pre- and
post-processing programs, the main component is the actual molecular dyna-
mics simulation program. This alone contains 31 source code modules with
about 42,000 lines of Fortran 77 code altogether. The difference to the former
GROMOS87 code becomes obvious, when comparing these quantities to the
22 modules with just about 9,000 lines of Fortran 77 code of GROMOS87.

GROMOS87 was already subject to several parallelization efforts. UH-
GROMOS and EulerGromos have been developed at the Texas Center for
Advanced Molecular Computation (Univ. of Houston) [3, 10, 12]. Further-
more, GROMOS87 has been parallelized within the framework of the EU-
funded Europort project [6, 11]. Both efforts led to message passing programs.
The new GROMOS96 code has been parallelized only once, using threads for
shared memory Silicon Graphics multiprocessors [7].

22.2.2 Structure of the Code

The code structure is highly pre-determined by the underlying physics and
the numerical solution method (see e.g. [1, 16]). Denoting the spatial position
of an atom i with mass mi at a specific point in time t by ri(t), a set of coupled
nonlinear differential equations is solved in the time domain that determine
the atoms’ trajectories due to Newton’s equations of motion considering an
interaction potential E:

∂2

∂t2
ri(t) = −∇E(t)

mi
i = 1, 2, 3, . . . (22.1)

This is done in a time-step fashion. Starting from a given initial configu-
ration, for each point in the discretized time the forces on each particle are
computed and accumulated. From these, Newton’s equations of motion allow
to determine position and velocity of all particles at the following time step
by integration.

Forces can be divided into two types:

22. Shared Memory Parallelization of GROMOS96 385

tpl

tout

load configuration data

main

perform T time-steps of simulation

all time-steps: assemble pair-list and

compute long-range interactions

solute-solute and -solvent

solvent-solvent

compute short-range interactions

solute-solute and -solvent

solvent-solvent

SHAKE

integrate positions to next time-step

write final configuration data to file

all time-steps: write data to file

count time

~0

13.8

33.3

10.4

36.1

2.6

~0

~0

~0

T

1

T

T

1

plT/t

plT/t

4+2T

outT/t

Fig. 22.1. GROMOS96 code structure and the modules’ computational complexi-
ties (in % of the total time) and frequency count for a thrombin molecule (3,078
atoms) with 5,427 solvent water molecules.

– Non-bonded interactions that act between any pair of atoms. These can be
further divided into long-range and short-range interactions, depending on
their decay rate with increasing distance.

– Bonded interactions, resulting from chemical bonds between atoms. They
capture e.g. bond lengths, bond angles and bond dihedral angles.

Short-range interactions are typically neglected for all atom pairs beyond
a certain cut-off radius. All relevant atom pairs are kept in a so-called pair-list
to allow an efficient evaluation of the forces. Due to the smoothness of the
dynamics, it is sufficient to update the pair-list only every tpl time steps (e.g.
tpl = 10). Analogously, long-range interactions are evaluated only from time
to time and assumed to be constant in between. In GROMOS96, long-range
interaction evaluation and pair-list construction is performed within the same
procedure.

Additional to these mechanisms, it is often required to restrain some de-
grees of freedom of the molecular ensemble, e.g. bond lengths, that would
undergo forbidden modifications within the simulation process. This is achie-
ved with an iterative procedure, commonly called SHAKE. SHAKE adjusts
the ensemble iteratively according to the restrictions. The code structure is
summarized in Figure 22.1 for a molecular ensemble with the protein mole-
cule thrombin (3,078 atoms) with 5,427 solvent water molecules (altogether
19,359 atoms). Figure 22.1 also shows the number of calls of and the time
spend in the modules.

386 M. Dormanns

22.3 Parallelization

The parallelization of GROMOS96 is based on the Shared Memory Interface
(SMI) library introduced in Chapter 16. It was done in accordance to the
step-by-step parallelization strategy implied by SMI. This methodology has
several advantages:

– Reduced complexity. Especially for the parallelization of given sequential
codes (in distinction to the development of a parallel application from
scratch) it is critical to deal with all data structures and sub-algorithms at
once.

– Scalability of the parallelization process. The performance of the parallel
code should scale with the amount of work spent on the parallelization
process. A detailed analysis of the time spent in the sequential code parts
may result in huge performance improvements by parallelizing the critical
code sections only. This is especially desirable in projects with limited
(financial) resources.

Shared memory is an essential requirement for both issues. Dealing with
a message passing parallelization that comes along with partitioned and dis-
tributed data structures, it would be impossible to proceed in such a step-by-
step process. The possibility to start with the parallelization of just a few code
parts is an enormous advantage especially for a code like GROMOS96, which
consists of a couple of different algorithms. Although contributing not consi-
derably to the computational complexity, some of them are quite complex to
parallelize and can be omitted in the first steps. Therefore, SCI-based NUMA
shared memory clusters show much more advantages than just performance
considerations would suggest.

In the following, the individual steps undertaken in the GROMOS96 par-
allelization effort are described.

22.3.1 Starting with Parallelism and Coordinating I/O

The parallel execution environment is set up by initializing SMI and re-
questing several parameters from it, e.g. the total number of processes, the
process ranks, etc.

GROMOS96 uses several streams of output. Some are written into cer-
tain files (e.g. trajectory data of the atoms over time), one goes to the console
(simulation parameters, error messages, ensemble-averaged quantities for in-
dividual time-steps as well as averaged over the entire simulation run). For
parallelization related output like performance numbers, debug output, etc.,
the standard error stream is used. Using SMI’s capabilities, standard error is
re-directed to the window-based front-end (see Chapter 16). Standard output
is re-directed to files, ensuring a different file name for each process automa-
tically. File output is performed by a single process only. This is possible

22. Shared Memory Parallelization of GROMOS96 387

since within the shared data programming model, each process has access
to all data. Clearly, this approach is not scalable in terms of Amdahl’s law.
But the major focus of this parallelization effort was to study the algorithm
parallelization.

22.3.2 Parallelization of the Interaction Calculation Kernels

The two most time consuming modules are:

– pair-list construction (including long-range interaction evaluation) and
– short-range interaction evaluation.

The pair-list is constructed not on the basis of individual atoms but on
the basis of small clusters of atoms that together possess a nearly neutral
charge, the so-called charge-groups. A charge-group is, for example, an enti-
rely solvent water molecule. Besides numerical advantages, this also reduces
the problem size for pair-list construction by a factor of about three.

The pair-list construction that is coupled with long-range force evalua-
tion (if this feature is requested) is a simple O(N2) algorithm that tests the
distance of all pairs of charge-groups. If it is small enough, a long-range force
contribution is evaluated and accumulated to a long-range force array for the
considered atoms. If it is even smaller than the short-range interaction cut-off
radius, the respective charge-group pair is added to the pair list.

The short-range interaction evaluation module consists of a loop over all
entries in the pair-list. For each charge-group pair, all interactions between
all constituting atoms are evaluated and accumulated to the short-range force
array.

Three properties of GROMOS96 are worth noting, because they influence
the parallelization strategy:

– Due to Newton’s law of actio and reactio, forces between atoms are anti-
symmetric, i.e. identical in magnitude but contrary in direction. Once a
force has been evaluated, it is crucial to accumulate it to both atoms under
consideration to gain performance. Therefore, it is impossible to parallelize
the application in a way that no two processes perform accumulations to
the same entries in the force arrays.

– The GROMOS96 implementation relies on a specific mapping of atoms to
indices in the force arrays. One major assumption is that all solute atoms
precede the solvent atoms. Furthermore, all atoms of each individual solute
molecule (if there are several) are consecutive in the force array, again
in a specific common order. Departing from this would result in major
implementation changes although it might be very reasonable considering
parallelization solely.

388 M. Dormanns

Construction of the pair-list and evaluation of long-range forces.
The major data structures affected by a parallelization of this module are:

– the array of all atoms’ forces that is subject to accumulation operations
and

– the pair-list.

The basic principle is to split the outer-most loop of the O(N2)-algorithm
among the processes. This means that several processes may contribute to an
atom’s long-range force. To enable this, the long-range force array is placed
in a globally accessible SCI shared memory region. The region is allocated
with the BLOCKED directive of SMI, i.e. it is assembled from equally-sized
segments on each machine to balance the number of remote memory acces-
ses among the processes. Then, an essential requirement for correctness is
to perform accumulations from different processes to identical atoms under
mutual exclusion.

The straight-forward way to ensure this is to guard each accumulation
operation by a mutex. Although SCI allows to implement efficient synchro-
nization mechanisms, their cost (on the order of 50 μs) is much to high
to allow the guarding of each single accumulation operation. We therefore
blocked the execution of the loop (see e.g. [9]). The resulting temporal loca-
lity is advantageous in several ways:

– The usage of the cache is improved.
– For each atom that is processed within this algorithm, quite an amount

of data that influences the computation has to be looked up in several
different data structures. For a small and deterministic number of atoms
it is possible to do this just once during the processing of the entire loop
block and to keep it in a suitable data structure during that phase. This is
called a software cache.

– If some kind of software-caching is done, it can be expanded to also capture
the atoms’ forces. An accumulation to the global force array is then per-
formed for all atoms at the end of the processing of an entire loop-block,
capturing all partial forces at once that result from all interblock interac-
tions. This compensates for the necessary synchronization operation and
also for the overhead due to remote memory accesses.

The scheduling of loop blocks to processes is performed by SMI’s loop-
scheduling facilities that minimize load imbalance while introducing only a
minimum of scheduling overhead. The resulting code fragment is sketched in
Figure 22.2.

Besides long-range forces, the results are per-process pair-lists correspon-
ding to the considered atom pairs within each process. This implicit partitio-
ning of the overall pair-list is already the basis for the parallelization of the
short-range interactions. So far, load balance has been optimized for pair-list
computation itself, but not for the resulting pair-lists. This will eventually
result in load imbalance during the short-range force computation phase.

22. Shared Memory Parallelization of GROMOS96 389

SMI_Switch_to_sharing(LongRangeForceArray)
SMI_Loop_schedule_init(1, NChargeGroups);
While work Do

SMI_Get_iterations(&OblockIdxMin, &OblockIdxMax);
Load data of atoms OblockIdxMin,...,OblockIdxMax
For Iblock=1 To Nblocks Do

IblockIdxMin = Iblock * BlockSz
IblockIdxMax = min{NChargeGroups, (Iblock+1)*BlockSz-1}
Load data of atoms IblockIdxMin,...,IblockIdxMax
For i=OblockIdxMin To OblockIdxMax Do

For j=IblockIdxMin To IblockIdxMax Do
Process atom-pair (i,j):
- compute distance
- compute long-range force if distance small enough
- insert into pair-list if distance small enough

End For
End For
SMI_Mutex_lock(...)

Accumulate partial forces of atoms IblockIdxMin,...,IblockIdxMax
SMI_Mutex_unlock(...)

End For
SMI_Mutex_lock(...)

Accumulate partial forces of atoms OblockIdxMin,...,OblockIdxMax
SMI_Mutex_unlock(...)

End While
SMI_Switch_to_replication(LongRangeForceArray)

Fig. 22.2. Pseudo-code of the parallelized pair-list construction and long-range
force evaluation algorithm.

To hide the parallelization of this module from the rest of the applica-
tion, SMI’s capabilities to switch between sharing and replication of memory
regions are used. Although not mentioned in particular, this parallelization
scheme is applied to solute-solute and solute-solvent as well as pure solvent-
solvent interactions in the same way.

Evaluation of short-range forces. The work partitioning of the short-
range force evaluation module is already pre-determined by the existence of
a partial pair-list in each process. Analogously to the pair-list construction,
the central data structure that is processed in parallel is the short-range force
array for all the atoms. So, the parallelization of this module is faced with
similar problems:

– Minimize the number of force array accesses because a fraction of them are
expensive accesses to remote memory.

– Minimize the number of lock/unlock operations that are necessary to gu-
arantee atomicity of accumulation operations from different processes.

Blocking, as it was done in the pair-list construction module, is not
straight-forward, because the pair-list represents an irregular grid structure
(considering each charge-group as a node and drawing an edge between all
nodes with an Euclidean distance smaller than the cut-off radius). The ori-

390 M. Dormanns

......
edges in order
of processing
after reordering

node data

SW-cache
for node data

time

Fig. 22.3. Three consecutive snapshots of temporal locality optimized grid traver-
sing. Black edges denote the latest visited edges (with a cache-size of 64 nodes).

ginal sequential code used a node-oriented procedure that processed interac-
tions in the order of the first node. Denoting the number of charge-groups
by G and the pair-list length by P , this requires G + P load operation of
atom data with a proportional amount of cache misses in the sequential case
and additionally a proportional amount of remote memory accesses in the
parallelized case. P is on the order of one magnitude higher than G, i.e. each
node possesses some tens of interacting neighbors. Furthermore, there is no
obvious way of reducing the number of lock/unlock operations.

For this purpose, blocking is done at the grid level by re-ordering the
pair-list. The new order tries to ensure that whenever a certain interaction
is processed, also other interactions of these atoms are processed shortly
afterwards (see Figure 22.3). It is possible to determine a re-ordering that
shows a working-set of fixed size, e.g. that of a (software) cache. To do so,
atoms that have been touched once during the grid-traversation only favor
the inclusion of other interactions of the same atoms for a short period of
time afterwards. Its length is determined according to the desired working-set
size. Keeping the data of the working-set atoms in temporal variables results
in a reduction of atom data loads of about 20 for a working cache-size of 256.
This temporal variables represent a software cache.

To decrease the number of lock/unlock operations, elements are purged
from and loaded into the software cache not individually, but in groups. This
already helps a lot, but it turned out that it is not yet sufficient. Ensuring
mutual exclusion with a single lock results in considerable contention for that
lock. The re-ordering of the pair list to achieve locality can also be exploited
to reduce lock contentions. The idea is to assign different locks to nearby

22. Shared Memory Parallelization of GROMOS96 391

no. charge-groups 13,824
pair-list length 442,484
orig. no. of purge/load operations of
charge-group data

13,824 + 442,484

operations = 456,308
software cache size 256
no. of locks 16
optimized no. of purge/load operations of
charge-group data

49,154

unoptimized no. lock/unlock operations 49,154
optimized no. lock/unlock operations 2,870

Table 22.1. Characteristic quantities for a 13,824 water molecule ensemble.

nodes in the grid (those that are geometrically adjacent or connected by
short paths in the grid). Such atoms are simply those that are successively
traversed in the re-ordered pair-list. Using e.g. 16 locks, which is a quantity
that allows a good scaling behavior in terms of lock contention for reasonable
degrees of parallelism, it was possible to reduce the number of lock/unlock
operations to just one for about every 10 nodes that are jointly purged from
the cache; see Table 22.1 for a summary.

Analogously to the pair-list construction module, the short-range force
array is switched to a sharing mode when this module is entered and swit-
ched back to a replicating mode at its end to allow to keep other modules
unchanged.

Load balancing. The parallelization as described so far results in load im-
balance within the short-range interaction module. The reason is that the
outcome of the pair-list construction module per process directly defines the
work load of the short-range interaction evaluation module. The work load
of the pair-list construction module has been scheduled for load balance, but
the computational load of the pair-list construction process is not necessarily
proportional to the amount of generated load for the succeeding short-range
interaction evaluation module.

To eliminate load imbalance in the short-range interaction module, a re-
distribution of the process-local pair-lists is performed. Besides enforcing load
balance, this allows even more optimizations. So far, the pair-list grid has been
partitioned implicitly by the loop-scheduling within the pair-list construction
module. Clearly, this results in a distribution in which each process’ pair-list
contains edges from the entire grid. The pair-list re-ordering step is able to
deliver the more temporal locality the more geometrically adjacent grid regi-
ons are concentrated within single processes. Such a distribution is enforced
at the same time the pair-lists are re-distributed for load-balancing reasons.
This is done with a simple geometrical partitioning of the three-dimensional
solution domain (see e.g. [8] for grid partitioning).

392 M. Dormanns

thrombin water
(in water) (large data set)

no. solute molecules 1 0
no. solute atoms 3,078 0
no. solute charge-groups 1,285 0
no. solvent molecules (H2O; = no.
solvent charge-groups

5,427 13,824

no. solvent atoms 16,281 41,472
total no. of atoms 19,359 41,472
pair-list update / long-range force
evaluation rate (tpl)

5 5

no. short-range solute-solute and
solute-solvent charge-group interac-
tions per time-step

57,735 0

no. short-range solvent-solvent
charge-group interactions per
time-step

175,326 442,584

Table 22.2. Characteristic quantities of the benchmark data sets.

22.4 Performance Results

22.4.1 Hardware Platform

The cluster used for evaluation purposes comprises six dual-processor Intel
Pentium Pro machines (200 MHz; 256 kByte L2-cache) running under Win-
dows NT 4.0. These, together with a file-server, are interconnected with Fast
Ethernet for access to a common file system. For parallelization purposes,
the machines are memory-coupled with Dolphin’s first generation PCI-SCI
adapters (Chapter 3).

22.4.2 Results

The performance of the parallelized code is evaluated using two benchmark
problems from Biomos, the distributor of GROMOS [7]: a thrombin protein
molecule in water and a large water ensemble (for parameters of the data sets,
see Table 22.2). The thrombin data set is of interest, because it is the only
one of relevant size that captures also long-range interactions. The water data
set was chosen because its size is comparable to problems of real interest.

Figure 22.4 shows the speed-up when running the program on up to four
machines, corresponding to a total of eight processors. The data has been de-
rived by comparing the measured run-times to that of the original sequential
code—not to the parallelized code running with a single process. However,
both perform similar.

The non-linear speed-up has three major reasons:

22. Shared Memory Parallelization of GROMOS96 393

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

sp
ee

d-
up

number of processors

thrombin
water

Fig. 22.4. Speed-up figures of the parallelized code on the SCI cluster.

1. The fraction of global shared memory that is local to each process decrea-
ses with an increasing number of machines. So, the fraction of remote
memory accesses grows proportional to the number of machines.

2. The relative overhead of switching between sharing and replication of the
shared memory regions grows, as the data has to be replicated on more
compute nodes.

3. According to Amdahl’s law, the remaining sequential parts of the pro-
gram limit scalability for higher degrees of parallelism.

All three issues result from the strategy to limit the code modifications to
just a few functions and to parallelize just the most time-consuming modules.
This approach has been chosen with consciousness and it has payed off.

22.4.3 Performance Comparison to Other Parallel GROMOS
Implementations

It is interesting to compare our performance figures to other parallel GRO-
MOS implementations. Biomos itself presents some results of a thread-based
shared memory version of GROMOS96 [7] on a SGI Power Challenge. Figure
22.5 compares the speed-up on the Power Challenge to the speed-up on the
SCI-cluster.

Within the Europort project [6, 11], different but comparable data sets
have been used, ranging from ∼2,000 to ∼30,000 atoms (proteins with wa-
ter). The evaluation of the resulting message passing code has been done on
various parallel machines, e.g. IBM SP1/2, Intel i860 Hypercube and SGI
Power Challenge. For comparison purposes, the speed-up for 8 processors is
of interest. Values between 4.4 and 5.6 are reported in [6] and between 4.8

394 M. Dormanns

1

2

3

4

5

6

1 2 3 4 5 6

sp
ee

d-
up

number of processors

SCI cluster, thrombin
SCI cluster, water

Power Challenge, thrombin
Power Challenge, water

Fig. 22.5. Comparison of speed-up figures for the thrombin and the water bench-
mark data set for the Biomos parallelization on a SGI Power Challenge and the
parallelization on the SCI-cluster.

and 6.7 in [11]. The first one refers to a not entirely parallelized code, compa-
rable to the here presented implementation, while the later refers to a fully
parallelized code.

The National Center for Supercomputing Application provides perfor-
mance figures for UHGROMOS [12] on various platforms (HP/Convex
SPP1200 and SPP2000, SGI Challenge and Origin). The reported speed-
ups for comparable data sets of 10,000 to 15,000 atoms (protein in water)
employing 8 processors range from 4.3 to 5.4. However, the speed-up is cal-
culated on the basis of the computation time of the parallel version, running
on a single processor. But this code is already about 15% slower than the
original one.

All benchmarks were run on dedicated—and therefore expensive—parallel
machines. Some of them are pure message passing machines like IBM SP1/2
and Intel i860 Hypercube, others are UMA (uniform memory access) ma-
chines with a more sophisticated memory system like SGI Challenge and
Power Challenge, and still others belong into the class of CC-NUMA (cache-
coherent non-uniform memory access) like HP/Convex SPP1200, SPP200
and SGI Origin. Nevertheless, the scaling behavior is not better than that of
the parallel version on the SCI cluster.

22.5 Conclusion

The described work is part of a larger effort that aims at application par-
allelization on NUMA shared memory cluster systems. Here, methodologies
are sketched that allow to exploit the given architecture for shared memory

22. Shared Memory Parallelization of GROMOS96 395

parallelization. At a first glance, one might get the impression that the par-
allelization effort is quite high. But most of the work was spent to improve
temporal data locality. Since the performance of the processors grows more
rapidly than that of memory access, this is also of advantage for a pure
sequential program. Other studies also report the necessity to improve per-
process data locality as a precondition for a scalable parallelization [2].

All of the advantages of shared memory parallelization could also be achie-
ved on the present cluster platform:

– the possibility of a scalable step-by-step parallelization process and
– the common view of all data for all processes which makes parallel pro-

gramming much simpler than dealing with partitioned and distributed data
structures as usually within a message passing programming model.

For the described parallelization of GROMOS96, just seven source code
modules had to be touched. Five of them saw only minor modifications:

– three for parallelism and shared memory initialization purposes (∼6,500
lines of code) and

– two for I/O adoption (∼2,700 lines of source code).

Just two have been modified more extensively, these are where the actual
parallelization took place:

– the pair-list construction with long-range force evaluation (∼2,200 lines of
code) and

– the short-range force evaluation (∼2,300 lines of code).

The resulting performance of the parallel code is comparable to that of
other parallelization efforts that employed expensive dedicated parallel ma-
chines. Considering the hardware costs and the time spent for the paralle-
lization, shared memory programming on SCI-clusters is very attractive.

The experience gained during this work leads to the conclusion that
NUMA shared memory cluster platforms are in fact more than just interesting
alternatives to dedicated parallel systems as well as to LAN-connected cluster
systems (e.g. PC clusters of the Beowulf type [17]). Lessons learned during
this work are that there is a considerable demand for suitable programming
interfaces and that it is essential for a programmer to be familiar with the
NUMA performance characteristics.

References

1. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids. Oxford Uni-
versity Press, 1987.

2. H. O. Bugge and P. O. Husoy: Efficient SAR processing on the Scali System.
Proc. IPPS, 1997.

396 M. Dormanns

3. T.W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott: Parallelizing
Molecular Dynamics using Spatial Decomposition. Proc. Scalable High Perf.
Comp. Conf., 1994.

4. M. Dormanns, S. Lankes, T. Bemmerl, G. Bolz and E. Pfeiffle: Parallelization of
an Airline Flight-Scheduling Module on a SCI-Coupled NUMA Shared-Memory
Cluster. Proc. High Perf. Computing Systems and Applications (HPCS), King-
ston, Canada, 1999.

5. M. Dormanns, W. Sprangers, H. Ertl, and T. Bemmerl: A Programming Inter-
face for NUMA Shared-Memory Clusters. Proc. High Performance Computing
and Networking (HPCN), pp. 698-707, LNCS 1225, Springer, 1997.

6. D. G. Green, K. E. Meacham, and F. van Hoesel: Parallelization of the molecular
dynamics code GROMOS87 for distributed memory parallel architectures. Proc.
High Performance Computing and Networking (HPCN), pp. 875-879, LNCS
919, Springer, 1995.

7. GROMOS96 benchmark results: http://igc.ethz.ch/gromos/benchmark.html
8. H.-U. Heiß and M. Dormanns: Partitioning and Mapping of Parallel Programs

by Self-Organization. Concurrency: Practice & Experience, Vol. 8, No. 9, pp.
685-706, Nov. 1996.

9. M. S. Lam, E. E. Rothberg, and M. E. Wolf: The Cache Performance of Blocked
Algorithms. Proc. 4th. Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV), 1991.

10. J. A. Lupo: Benchmarking UHGROMOS. Proc. 28th Int. Conf. on System
Sciences, pp. 132-141, 1995.

11. K. Meacham and D. Green: Parallelization of the GROMOS87 Molecular Dy-
namics Code: An Update. Proc. High Performance Computing and Networking
(HPCN), pp. 170-176, LNCS 1067, Springer, 1996.

12. National Center for Supercomputing Applications: Computatio-
nal Biology Applications, UHGROMOS and Gromos87 Benchmarks.
http://mithril.ncsa.uiuc.edu/SCD/straka/PerfAnalysis/Apps/cb.html

13. S. M. Paas, M. Dormanns, T. Bemmerl, K. Scholtyssik, and S. Lankes: Compu-
ting on a Cluster of PCs: Project Overview and Early Experiences. 1. Workshop
Cluster Computing, Technical Report CSR-97-05, TU Chemnitz, Dept. of Com-
puter Science, 1997.

14. M. Stockhausen: Parallelisierung und Evaluation eines Rechenkerns einer Erd-
bebensimulation auf einem speichergekoppeltem PC-Cluster. Diploma Thesis
(in German), Chair for Operating Systems, RWTH Aachen, 1999.

15. S. Tholen: Parallelisierung raumakustischer Simulationsalgorithmen für SCI
Cluster. Diploma Thesis (in German), Chair for Operating Systems, RWTH
Aachen, 1998.

16. W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger,
A. E. Mark, W. R. P. Scott, and I. G. Tironi: Biomolecular Simulation: The
GROMOS96 Manual and User Guide. BIOMOS b.v., Zürich, Groningen and
VDF Hochschulverlag AG an der ETH Zürich, 1996.

17. M. S. Warren, D. J. Becker, M. P. Goda, J. K. Salmon, and T. Sterling: Parallel
Supercomputing with Commodity Components. Proc. Int. Conf. on Parallel
and Distributed Processing Techniques and Applications (PDPTA), pp. 1372-
1381, 1997.

23. SCI Prototyping for the Second Level
Trigger System of the ATLAS Experiment

A. Belias1, A. Bogaerts2, D. Botterill1, J. Dawson3, E. Denes2, F. Giacomini2,
R. Hauser2, C. Hortnagl2, R. Hughes-Jones4, S. Kolya4, D. Mercer4,
R. Middleton1, J. Schlereth3, P. Werner2, F. Wickens1

1 Rutherford Appleton Laboratory, Didcot (UK)
email: {a.belias,d.botterill,r.middleton,f.wickens}@rl.ac.uk
http://hepwww.rl.ac.uk/

2 CERN, Geneva (Switzerland)
email: {Andreas.Johannes.Bogaerts, Francesco.Giacomini, Ervin.Denes,
Reiner.Hauser, Christian.Hortnagl, Per.Werner}@cern.ch
http://www.cern.ch/

3 Argonne National Laboratory, Illinois (US)
email: {jwd,jls}@hep.anl.gov
http://www.hep.anl.gov/

4 University of Manchester, Manchester (UK)
email: {r.hughes-jones,d.mercer}@man.ac.uk, scott@a3.ph.man.ac.uk
http://www.hep.man.ac.uk/

23.1 Introduction

SCI’s ultra low latency and high bandwidth [11] make it a possible candidate
to solve the problem of interconnecting a large number of processors in order
to filter data produced in high energy physics experiments. In particular
this chapter focuses on prototyping for the second level trigger system of
the ATLAS experiment [2], at the European Laboratory for Particle Physics
(CERN).

After a brief introduction to the problem of real-time data selection in
HEP experiments in Section 23.2, Section 23.3 presents the definition, design,
implementation and test of a low-level Application Programming Interface
(API) for SCI. In Section 23.4 and 23.5 the higher-level application software,
the overall architecture of the system and their evolution are described.

23.2 The ATLAS Trigger System

Much evidence indicates that new physics phenomena may be visible in pro-
cesses of energy scale around a few TeV (1 TeV = 1012 electron volts). The
Large Hadron Collider (LHC) (now under construction at CERN, near Ge-
neva, Switzerland) will bring protons into head-on collisions at these energies.
The LHC will occupy the 27 km tunnel currently used for the Large Electron
Positron collider (LEP), and will allow scientists to penetrate deeper into the
structure of matter than has previously been possible.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 397-414, 1999
© Springer-Verlag Berlin Heidelberg 1999

398 A. Belias et al.

Fig. 23.1. Overall view of the ATLAS trigger system.

ATLAS is a large particle detector under construction to be ready for
operation at the LHC in the year 2005. Its purpose is to measure the cha-
racteristics of the particles, such as their energies and trajectories, resulting
from the proton-proton collisions (events). It consists of some 107 electronic
channels, each of which must be read out for processing and recording.

The counter-rotating bunches of protons inside the LHC will pass through
each other inside ATLAS at the rate of 40 MHz (i.e. every 25 ns). From
simulation and knowledge of detector performance this is estimated to result
in a data rate of 1015 byte/s. Clearly, it is way beyond any current technology
to record this much data for subsequent analysis.

Thus, a radical approach is proposed whereby a mixture of custom hard-
ware and general-purpose processors will be deployed in a highly parallel man-
ner to reduce the amount of data coming out from the detector. The reduction
comes from real-time rejection of un-interesting events, so that an event rate
of about 100 Hz (corresponding to a data rate of about 100 MByte/s) is
finally committed to long term store for subsequent off-line analysis.

The real-time selection process is termed “triggering”. In ATLAS it is
structured in three logical levels, as shown in Figure 23.1.

The first level (LVL1) must accept the 40 MHz beam-crossing rate. This
rate can be handled only by specialized electronics operating on coarse grain
data from a few sub-detectors; the level-1 processors implement simple local,
highly parallel algorithms. The decision latency is limited to about 2 ®s by
the size of the on-detector pipeline buffers. The maximum LVL1 output rate

23. The ATLAS Second Level Trigger 399

is designed to be about 100 kHz and thresholds would be adjusted to meet
this requirement.

The second level of the trigger system (LVL2) must reduce the trigger
rate to a level of about 1kHz which can be sustained by the event building
system, which collates fragments from all sub-detectors into complete events.
Full granularity, full precision data for an event would be available to the
LVL2. However, in order to save processing power and network capacity,
it only examines regions of the detector identified by LVL1 as containing
interesting information (Regions of Interest or RoIs).

The third and last level of the trigger system is the Event Filter (EF),
which takes the definitive decision if an event has to be kept or discarded. It
operates on complete events, possibly using off-line analysis code.

SCI-based work has concentrated on the second level trigger which, in
its final version, is estimated to consist of about 2000 data sources and 1000
processing nodes, all connected by a high performance network that should
sustain a traffic rate of several GByte/s.

23.3 Low-Level API

To allow different hardware implementations and software emulation of in-
complete hardware functionality, IEEE Std 1596.9 “Physical layer Applica-
tion Programming Interface for the Scalable Coherent Interface (SCI PHY-
API)” [12] defines an API to abstract the underlying SCI physical layer (see
Chapter 10).

Initial SCI activity, prior to commercial support for SCI software, con-
centrated on an in-house implementation of the SCI PHY-API. This partial
implementation focussed mainly on giving the possibility to map remote me-
mory in particular in the Demonstrator Programme (see Section 23.4).

More recently, CERN and RAL have been involved in a EU-funded pro-
ject, named “Standard Software Infrastructures for SCI-based Parallel Sy-
stems” (SISCI) [16], aiming at developing highly advanced, state-of-the-art,
software environments and tools to exploit the unique hardware capabilities
of the SCI communications standard. One of the major objectives of the pro-
ject was again the specification of a low-level API. However, in this case it
represents an abstraction of both hardware and low-level software; in this
respect it can be seen as an additional layer, more application-oriented, on
top of the SCI PHY-API.

The SISCI API [9] supports:

Distributed shared memory whereby a memory segment can be allocated on
one node and mapped in the virtual address space of a process running
on another node. Data is then moved using programmed I/O.

DMA transfers to move data from one node to another without CPU inter-
vention.

400 A. Belias et al.

Remote interrupts whereby a process can trigger interrupts on a remote
node.

Fault tolerance allowing a process to check if a transfer was successful and to
catch asynchronous events, such as a link failure, and take appropriate
action.

In the design phase of the SISCI API much emphasis was placed on pro-
tection against improper use of the low-level resources, but at the same time
guaranteeing that data transfers could still be performed efficiently. The API
design followed an object-oriented approach: the characteristics of the availa-
ble resources (e.g. memory segments or interrupts) are encapsulated in data
structures (called descriptors) that a client application can refer to only via
a handle and access only via the API functions. Resources (and their cor-
responding descriptors) are arranged in a dependency graph, in such a way
that it is not possible to free a resource if other resources, located either
locally or remotely, depend on it. For many resources a finite state diagram
has been defined. Changes of state may be caused by calls to API functions
or by asynchronous events (e.g. a link failure).

The SISCI API also provides some functions, reserved for “expert” users,
that allow access to low-level resources, such as CSR [13] registers.

23.3.1 Basic Performance Measurements

To understand the potential of this technology and its behavior in a complex
system it is important to have a good knowledge of the performance of SCI
under well defined conditions. For this reason a number of benchmarks have
been defined and applied to a variety of configurations. All the measurements
shown in this section are based on the remote shared memory paradigm.

Some benchmarks aim at understanding the characteristics of the par-
ticular SCI hardware, in our case the PCI-SCI adapter card from Dolphin
Interconnect Solutions [7], based on their link controller LC-1 running at a
link speed of 200 MByte/s [8]. For example Figure 23.2, left, shows how the
bandwidth varies according to the size of the transfer (8 to 4096 bytes) and
to the maximum number of allowed outstanding SCI requests (1, 2, 4 or 8):

– for a given number of allowed outstanding requests, the worst performance
is obtained for a message size of 8 bytes; the throughput doubles for 16-
byte transfers (since the number of 16-byte SCI packets is constant but
the amount of transferred data doubles) and remains constant for 32-byte
transfers (since both the number of SCI packets and the amount of trans-
ferred data double). For 64-byte data transfers, 64-byte packets are used,
fully exploiting the SCI hardware and causing a sharp increase in the achie-
ved bandwidth. For data transfers larger than 64 bytes the throughput
remains constant because a double amount of data is transferred using a
double number of SCI packets.

23. The ATLAS Second Level Trigger 401

Oustanding requests

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000

Message size (bytes)

B
an

dw
id

th
 (

M
B

yt
e/

s)

8 outstanding requests
4 outstanding requests
2 outstanding requests
1 outstanding request

Software overhead

0

10

20

30

40

50

60

70

80

90

1 10 100 1000 10000
Message size (bytes)

B
an

dw
id

th
 (

M
B

yt
e/

s)

Low-level API

Low-level API with barriers

Message passing

Fig. 23.2. Bandwidth as a function of message size, depending on the maxi-
mum number of allowed outstanding SCI requests (left) and with different software
overheads (right).

– for a given size of the data transfer, the bandwidth doubles going from 1 to
2 and from 2 to 4 outstanding requests, thus showing perfect scaling. The
scaling going from 4 to 8 outstanding requests is instead less than linear
and is due to the fact that the limit for programmed I/O is reached on the
host PCI bus [15].

Other benchmarks aim at estimating the degradation in performance
when more and more flow control is included in the data exchange proto-
col. The protocol can simply require a barrier operation after each send to
guarantee that data is not locally cached, or it can be more sophisticated and
require, for example, acknowledgments from the receiver. A message-passing
protocol has been defined, implemented on top of the remote shared memory
paradigm provided by the low-level API and provides synchronization bet-
ween source and destination. This follows a simple mechanism in order to
communicate:

1. sender and receiver agree initial addresses for control word and start of
data area;

2. the sender writes the data at a specified remote address on the receiver;

402 A. Belias et al.

Fig. 23.3. Suite of technology independent communication benchmarks.

3. the sender writes a control word, representing the size of the message, at
an agreed location on the receiver, to signal the message arrival;

4. the receiver sends back to the sender an acknowledgment, representing
the next address to use for sending data.

Figure 23.2 (right) shows how the throughput decreases passing from the
raw bandwidth (where data is written as fast as possible into the remote
node) to the case where a barrier is used after each send, to the case where
the message passing is used. The difference between them is especially evi-
dent for short data transfers (where barrier and synchronization overheads
respectively dominate), whereas it becomes less important for larger messa-
ges.

Since other technologies, such as ATM and Ethernet, are possible candida-
tes for the ATLAS second level trigger, a number of technology independent
benchmarks, shown in Figure 23.3, have also been defined [1]. The purpose is
to provide a common way to evaluate important networking aspects typical
of the final system. These benchmarks include:

Ping-Pong where one node sends data to another node and waits for the
data to be returned. Half the round-trip time is used to calculate the
throughput.

Broadcast where one node sends data to several receivers. SCI does not sup-
port hardware broadcast which is thus simulated in software.

23. The ATLAS Second Level Trigger 403

Funnel-in where several data sources send data to a single receiver.
All-to-All where all nodes send data to each other simultaneously. In an ideal

system, increasing the number of nodes in the system increases the overall
system throughput.

These benchmarks have been executed for varying message sizes and num-
bers of nodes and used the message-passing library mentioned above.

Figures 23.4 show the overall system throughput as a function of message
size for Ping-Pong, All-to-All, Funnel-in and Broadcast.

For Ping-Pong data is shown for one and two pairs. The overall system
throughput is clearly doubled by the addition of a second pair to the ring.

The Broadcast plot shows little variation as more data receivers are added
to the system. The small visible variations are due to minor differences in
processor motherboard versions.

In the case of Funnel-in, overall system throughput increases as nodes are
added to the system, though it is clear that the addition of the fourth node
causes significant reductions in throughput for larger message sizes. This is
caused by the receiving node’s inability to keep up with three senders. In
particular, the host PCI bus appears to be a bottleneck and incoming SCI
traffic is ‘busied’, with a consequential immediate retry on SCI [5].

In the All-to-All test, the increase from 2 to 3 nodes appears to give almost
3 times the performance boost, as expected, at least for smaller message sizes.
However, above 1 kByte in the 3 node system, throughput degrades as the
receiving node is no longer able to cope. In the 4 node system each node has to
process data from three sources, in addition to sending to 3 destinations and
is likely to be CPU limited. Thus there is little performance enhancement.

23.4 The ATLAS Level-2 Trigger Demonstrator

A Demonstrator Programme was defined to evaluate different network tech-
nologies that could satisfy the requirements of the second level trigger system.

The main components of the system are the following:

Read-out-Buffer (RoB) a RoB keeps fragments of events coming from a spe-
cific part of the ATLAS detector and represents a data source for the
LVL2. Events are stored in the RoBs while they are being analyzed by
the LVL2.

Feature Extractor (FeX) a FeX is responsible for the calculation of certain
parameters (features) of a Region of Interest, extracting it from the data
it has received from a few RoBs. Feature extraction is also known as
“local processing”.

Global processors a Global processor collects all of the features concerning
one event and, based on these, decides if that event is of interest. The
decision is then forwarded to the Supervisor for the appropriate action.

404 A. Belias et al.

All-to-All

0

10

20

30

40

50

10 100 1000 10000 100000
Message size (bytes)

T
hr

ou
gh

pu
t (

M
B

yt
e/

s)

4 nodes

3 nodes

2 nodes

Broadcast

0

10

20

30

40

50

10 100 1000 10000 100000
Message size (bytes)

T
hr

ou
gh

pu
t (

M
B

yt
e/

s)

3 receivers

2 receivers

1 receiver

Funnel-in

0

10

20

30

40

50

10 100 1000 10000 100000
Message size (bytes)

T
hr

ou
gh

pu
t (

M
B

yt
e/

s)

3 senders

2 senders

1 sender

Ping-Pong

0

10

20

30

40

50

60

70

80

90

10 100 1000 10000 100000

Message size (bytes)

T
hr

ou
gh

pu
t (

M
B

yt
e/

s)

2 pairs

1 pair

Fig. 23.4. Overall system throughput as a function of message size for Ping-Pong,
All-to-All, Funnel-in and Broadcast.

23. The ATLAS Second Level Trigger 405

Fig. 23.5. The local-global option of the second level trigger system

Supervisor the Supervisor accepts event identifiers and RoI pointers from
LVL1, dispatches events to LVL2 processors for appropriate examination
and waits for decisions to come back. If the event is not interesting it is
erased from the RoBs, otherwise the Supervisor informs the Event Filter
to refine the analysis.

The demonstrator focusing on the SCI technology assumed a parallel push
architecture for the system, as shown in Figure 23.5. Under the control of the
Supervisor process [4], RoI pointers are distributed to selected RoBs. Each
affected RoB pushes data to Feature Extractor (FeX) processors, which, in
parallel for each RoI and for each detector layer in the RoI, determine specific
characteristics of an event. The features from a single event are then passed
to a Global processor, that combines them, generates a trigger decision and
forwards it to the Supervisor, which then decides whether the event should
be kept or discarded. The Supervisor communicates with the RoBs using
an RoI Distributor. The parallel push architecture is also referred to as the
“Local-Global” option [10].

To test both SCI technology and fundamental system design concepts,
extensive studies have been carried out on a vertical slice of the second level
trigger, i.e. a system constituted by all the elements that should appear in
the final system but much reduced in number. The SCI vertical slice, shown
in Figure 23.6, was set up at CERN in November 1997 and included 3 RoBs,
3 FeXes, 3 Globals and a Supervisor, connected by an SCI network and the
RoI Distributor.

23.4.1 Hardware

The FeX and the Global processors were Alpha computers from DEC of dif-
ferent clock speeds (AXPpci33 at 166 or 233 MHz and Multia at 166 MHz)

406 A. Belias et al.

Fig. 23.6. Vertical slice configuration with the SCI network constituted of a single
ring (left) or of four ringlets connected through a 4-port switch (right).

running ®C/OS, a small stand-alone real-time kernel [14]. The RoB, the Su-
pervisor and the RoI Distributor were VME-based RIO2s from CES (type
8061 and 8062 with a clock speed of 100 MHz and 200 MHz respectively) [6]
running LynxOS, a real-time Unix operating system. All the processors, ex-
cept the RoI Distributor, were equipped with Dolphin PCI-SCI adapters. The
SCI network was configured both as a single ring and as four ringlets connec-
ted by a 4-port switch. The RoI Distributor was connected to the Supervisor
via an S-Link [3] and to the RoBs via the VME backplane [17].

23.4.2 Software

The SCI hardware provided by Dolphin ICS offers several facilities to send
and receive data. In the tests two modes were evaluated:

Remote Shared Memory where the sender maps into its address space a me-
mory segment residing on a remote node and then transfers data transpa-
rently by a memory copy operation. On top of this, the message-passing
protocol introduced in Section 23.3.1 has been used.

DMA and Ring Buffer where the sending CPU loads the DMA engine of the
SCI adapter with a transfer specification. The adapter then fetches the
data from memory and transmits it to the remote node, where it is placed
in a ring buffer. Application software then extracts data from the buffer
and processes it.

23. The ATLAS Second Level Trigger 407

23.4.3 Vertical Slice Configurations

Two parameters were used to characterize the performance of the system:
the event latency and the average time per event. The former is defined as
the time from when the Supervisor injects an event into the system to the
time it receives a decision back. The latter is the average time between two
trigger decisions and is measured by dividing the duration of the whole test
by the number of events that have passed through the system. The values of
the two parameters differ considerably when more than one event is allowed
in the system at the same time.

Several types of parallelism were present in the system (see Figure 23.7)
and their impact on the time-per-event parameter was studied:

Pipelining whereby multiple events are allowed to enter the system quasi
simultaneously, exploiting the inherent pipeline structure of the RoB -
FeX - Global chain.

Event Parallelism with multiple RoB - FeX - Global chains running concur-
rently.

Fragment Building allowing several event fragments from different RoBs to
be sent in parallel to the same FeX.

RoI Parallelism allowing several FeXes (each possibly receiving data from
multiple RoBs) to analyze multiple RoIs of several detectors of the same
event in parallel.

For each of the possible configurations, all in a closed loop under control
of the Supervisor, latency and average time per event were measured varying
the size of the data transfer between RoBs and FeXes and the number of
events allowed in the system at the same time. In some cases an SCI switch
was introduced to partition the network in smaller rings. The goal was to
evaluate the impact of the different forms of parallelism on the performance
of the system and to find where saturation would eventually occur.
Pipeline. A single stream is constituted by a RoB, FeX and Global; for this
test each event has only one RoI and this RoI is contained in a single RoB.
The stream is activated by the Supervisor when an RoI record of an event
is received from LVL1 and is terminated when the Supervisor receives the
trigger decision from the Global processor.

Since the stream has an intrinsic sequential structure with each stage
corresponding to a processing step, several events can be pipelined in the
system. Figure 23.8 (left) shows the time per event as a function of RoB data
size for different numbers of events allowed in the stream.

For one event in the system the time per event is determined by the total
loop latency. For two events, they are distributed over the stages with no
queues forming (i.e. no increase in latency) until the data size is slightly over
2 kByte and the time per event just scales.

For longer events, or more than two allowed in the system, a queue forms
at the slowest element and the rate is limited to the speed of this element. For

408 A. Belias et al.

Fig. 23.7. Forms of parallelism studied in the SCI Demonstrator Programme.

most event lengths, the slowest element is the RoB-to-FeX transfer (with an
effective bandwidth of 18-20 MByte/s), but for very short events it is the RoI
Distributor. In addition, for these very short messages, there is a small but
significant contention of the PCI bus of the RoB, arising from attempts to
receive RoIs from the RoI Distributor (over the VME-PCI bridge) at the same
time as initiating transfers to SCI by the RoB host CPU. This contention
slows down the RoI Distributor as the number of SCI packets increases.

Event Parallelism. Scalability is one of the most important characteristics
of the level-2 trigger system. With the available equipment it was possible
to arrange up to three RoB - FeX - Global streams, controlled by a unique
Supervisor. As in the previous case, each event has only one RoI and this RoI
is contained in a single RoB.

In going from one to two and three streams one would expect a propor-
tional increase in the aggregate bandwidth and a decrease in the time spent
for each event. Although scaling has been observed, it is not perfect, owing
to the fact that the Supervisor and the RoI Distributor are shared resources.
The overall system performance is thus limited, especially for small message
sizes where the operating frequency is higher.

RoI Fragment Building. The system was set up with one, two or three
RoBs, one FeX and one Global, to evaluate the case where there is only one
RoI per event, but the RoI is distributed over multiple RoBs. Thus, a FeX

23. The ATLAS Second Level Trigger 409

Pipeline

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000 5000

RoB to FeX transfer size (bytes)

tim
e

pe
r

ev
en

t (
μs

)

1 event
2 events
4 events
8 events

Switch

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

RoB to FeX transfer size (bytes)

tim
e

pe
r

ev
en

t (
μs

)

without switch

with switch

Fig. 23.8. Effect of event pipelining (left) and of the introduction of a switch (right)
in the SCI demonstrator.

receives data from several RoBs, which has to be combined to build an RoI.
This configuration tests the efficiency of the RoI fragment builder inside a FeX
and the cost or benefit of spreading event data over several sources. Since the
FeX has to wait for an RoI fragment coming from each RoB, the performance
is affected by the degree of parallelism of the RoB-to-FeX transfers and the
fragment building.

The degree of parallelism was observed to be poor, for two reasons:

– the RoB-to-FeX transfers are partly serialized: owing to the lack of a bro-
adcast option in the VME bus, the RoI Distributor starts successive RoBs
with a delay of about 15 ®s between them.

– since the speeds of the processors are different, the FeX has to wait for the
slowest RoB before completing an RoI.

RoI Parallelism. The system was composed of one, two or three RoB - FeX
combinations feeding into one Global. An event contained one, two or three
RoIs respectively, each in a single RoB. Since the Global has to wait for a
feature coming from each FeX before taking a decision, the performance was
similar to that of a single stream, but only if there was complete overlap of
all the RoB - FeX combinations. Deviations were caused by the 15 ®s delay of
the RoI Distributor and the fact that the Global has to wait for the slowest
of the RoB - FeX combinations. Nevertheless, considerable parallelism was
seen.

Switch. The configuration used to evaluate event parallelism with three in-
dependent streams controlled by the same Supervisor has been used to study

410 A. Belias et al.

the impact of a 4-port switch on the performance of the system. The nodes
were arranged in four ringlets each connected to a switch port, as shown in
Figure 23.6 (right).

As shown in Figure 23.8 (right) the switch leads to a small improvement
in the performance of the system, despite the extra delay of about 1.5 ®s in
the packet latency. The improvement could be attributed to the following:

– there were less nodes on each ringlet connected to the switch and this
reduced the time to send a packet around the ring from a RoB to a FeX.

– there was less traffic on each ringlet reducing the chance of any delay.

23.4.4 Conclusions

The tests have demonstrated high rate operation of the components used in
this system. In all cases, except the RoI Distributor, the rates are comparable
to those required, albeit with simplified functionality.

Some scalability in terms of pipelining, event parallelism, fragment buil-
ding and RoI parallelism has been demonstrated for typical ATLAS data
fragment sizes (around 1 kByte). Two bottlenecks have been identified in the
system that limited scalability: the RIO2 PCI bus bandwidth and the RoI
Distributor rate.

23.5 Objectives and Design of the Second Prototype

When the first prototyping was started as part of the ATLAS Demonstra-
tor Programme, it was not at all clear if a second level trigger system could
be built from commercial components. The main emphasis was therefore on
exploring the hardware limits of networks and their interfaces, in particular
bandwidth and latencies for transmission of relatively small messages, typi-
cally about 64 bytes for control and about 1 kByte for data. As confidence
grew it became apparent that larger more uniform systems with more reali-
stic data patterns allowing more detailed measurements were necessary for a
better understanding.

23.5.1 Lessons Learned from the Demonstrator

The deeper analysis of the ATLAS level-2 trigger problem during the Demon-
strator Programme showed that there were significant advantages, in lower
bandwidth and processor requirements, if a sequential selection strategy were
used. Furthermore the tests of different hardware increased confidence that
commercial components would be able to provide the performance required
for a system to be built using a single network interconnecting the different
parts. Whilst the separate distribution path used for data requests in the SCI

23. The ATLAS Second Level Trigger 411

demonstrator could still be used with a sequential selection strategy, it is an
unnecessary complication. Thus the preferred solution for the testbeds in the
next phase assumed sequential selection and a single network.

Testbeds comprising 32 or more processors running in real-time are al-
ready complex and need good quality software, with flexible configuration
and control capabilities. The software from the Demonstrator was optimized
to get good performance from the hardware, but was inadequate to use in
the larger systems planned in this next phase. Understanding the behavior of
a complex system needs detailed measurements of the behavior of hardware
and software components. The analysis of an inhomogeneous system consi-
sting of dissimilar components such as processors running at different clock
speeds or different I/O interfaces already gave difficulty in the demonstra-
tors and should be avoided in the testbeds if possible. In the Demonstrator
selection algorithms were replaced by idle loops. But a more realistic environ-
ment with real algorithms using simulated detector data would give a more
complete test of the system.

23.5.2 Testbed

The available time, nine months to design and build the system and one
year for measurements and analysis dictates the need for a simple, common
‘reference’ hardware and software platform. The reference testbed hardware
consists of PCs connected to a single (Fast)Ethernet network. RoBs and
Supervisor are emulated with PCs.

The reference software is designed to be platform independent; actual
implementations are foreseen for PCs running either Windows NT or Linux.
These operating systems whilst widespread are sufficiently different to ensure
a high degree of platform independence. TCP and UDP are used for basic
communication.

The testbed is a generic system which is expected to have neither the per-
formance nor the size required for the final ATLAS system. It serves as an
environment to study trigger selection procedures, faster networking, scalabi-
lity and architectures. More realistic systems can be derived from the generic
testbed by substituting especially optimized hardware and software compo-
nents. This allows for a better evaluation of new technologies when they
become available in a standardized environment at minimal cost.

Architectures being considered at the moment are either clusters of single-
processor or small multi-processor machines interconnected by a network or
fully commercial HPCN systems. It is not yet clear if sufficiently large clusters
with enough I/O bandwidth and network switching capacity operating at the
design trigger frequency of 100 kHz will be available commercially. Demands
on the network can be reduced by decomposing it into smaller subnets.

A generic model for the flow of data which is common to all architec-
tures is illustrated in Figure 23.9. The operation is as follows: pointers to
RoIs in the different detectors as identified by LVL1 are reformatted by the

412 A. Belias et al.

Fig. 23.9. Logical architecture of the second level trigger system. Left of the dotted
line are the interfaces to the detector, level-1 trigger and data acquisition.

Supervisor and sent to Global Processing Units as an EventRequest. These
need the results (“features”) calculated from the detector data contained in a
small window identified by the RoI pointers. This calculation is delegated to
FeX Local Processing Units by sending RoIRequests. Feature Extraction Pro-
cesses send DataRequests to the RoBs. Raw data flows back to the Feature
Extractors (DataResponse), features to the Global Processors (RoIResponse)
and finally a trigger decision to the Supervisor (EventResponse).

The generic data flow model allows a common software basis for a variety
of architectures which differ in the way algorithms and data are distributed
and accessed across the network. This can be a single PC, though larger
architectures require a network. The single farm solution consists of a single
switching network interconnecting Supervisor, RoBs and a farm of processors
executing algorithms on a per event basis. The Local-Global solution used
in the SCI Demonstrator (see Section 23.4) sub-divides the processing farm
and now uses a “requested push”; it would allow the partitioning of the
system, and hence of the network, into several RoB-FeX sub-farms, one per
sub-detector, and one Global sub-farm. Commercial versions using HPCN
systems, although not currently competitive, may in the future offer a useful
solution based on the Local-Global option.

23. The ATLAS Second Level Trigger 413

23.5.3 Software

Object Oriented design and implementation techniques have been adopted
for the software which falls roughly in two categories:

Algorithms which are strongly physics oriented;
Framework software for the organization of the flow of data.

Algorithms comprise feature extraction and global processing (or stee-
ring), which transforms features into physics signatures (such as the identifi-
cation of particles and their properties). The algorithms have been redesigned
or adapted to an OO framework and will be run in testbeds using simulated
detector data which is pre-loaded in (emulated) RoBs. One of the challenges
of the project is to engineer algorithms such as to make them independent of
the architecture, i.e. unaware of the fact that both data and algorithms may
be distributed across processor boundaries.

To make the software independent of the operating system a small num-
ber of services (a subset of those offered by e.g. POSIX and Windows NT)
have been encapsulated in OS Services Interface Objects. Similarly to ensure
the possibility of testing an open-ended range of communications technolo-
gies (currently including ATM, Fast and Gigabit Ethernet, SCI and vendor
specific HPCN technologies) only the higher levels of message passing based
protocols have been defined, supplemented by a low-level implementation
using TCP or UDP for the purpose of testing the complete software chain.
The message passing layer is intended to leave enough flexibility to optimize
an actual implementation for either message passing or shared memory based
interconnects. Message passing protocols are further encapsulated in objects
which may use RPC-like techniques to hide the potentially distributed na-
ture of algorithms and data to the application. Additional support software
being developed comprises tools and APIs for access to databases, process
management, displays, monitoring and run control.

23.5.4 SCI Testbed

An SCI-based prototype of the ATLAS second level trigger system has been
constructed. The software supports both simple message passing over the
SISCI API and MPI. Our system consists of 16 dual Pentium II PCs equipped
with Dolphin PCI-SCI adapters based on their 400 MByte/s technology and
connected by a 16-port SCI switch. The resulting measurements will be used
as input for a Technical Proposal of the ATLAS High-Level Trigger, Data
Acquisition and Detector Control System due at the end of 1999.

414 A. Belias et al.

Acknowledgments

This work has been partially funded by the SISCI Project (EU Contract
23174). We would also like to thank our many colleagues within ATLAS and
especially those in the Trigger/DAQ group.

References

1. J. Apostolakis et al., Abstract Communication Benchmarks in Parallel Systems
for Real-Time Applications, CHEP ‘97, Berlin, April 7-11, 1997.

2. ATLAS Collaboration, Technical Proposal for a General-Purpose Experiment
at the Large Hadron Collider at CERN, CERN/LHCC/94-43, Geneva, Switzer-
land, December, 1994.

3. H.C. van der Bij et al., S-LINK, a Data Link Interface Specification for the
LHC Era, presented at the X IEEE Real-Time Conference, Beaune, France,
September 22-26, 1997.

4. R. Blair et al., The ATLAS Level-2 Trigger Supervisor, presented at the 2nd
Workshop on LHC Electronics, Balatonfüred, Hungary, September 1996.

5. A. Bogaerts et al., Studies of SCI for the ATLAS Level-2 Trigger System, X
IEEE Real-Time Conference, Beaune, France, September 22-26, 1997.

6. Creative Electronic Systems, RIO II User Guide, Geneva, Switzerland.
7. Dolphin Interconnect Solutions, PCI-SCI Cluster Adapter Specification, 1996.
8. Dolphin Interconnect Solutions, Link Controller LC-1 Specification, 1995.
9. F. Giacomini et al., Low-level SCI Software: Requirements, Analysis and Fun-

ctional Specification, Dolphin ICS, Oslo, Norway, May, 1998.
10. J. R. Hansen, Local-Global Demonstrator Programme for the ATLAS Second

Level Trigger, presented at the X IEEE Real-Time Conference, Beaune, France,
September 22-26, 1997.

11. IEEE Computer Society, IEEE Standard for Scalable Coherent Interface (SCI),
IEEE Std 1596-1992, August, 1993.

12. IEEE Computer Society, Physical Layer Application Programming Interface
for the Scalable Coherent Interface (SCI PHY-API), IEEE Std P1596.9, Draft
0.51, June 15, 1997.

13. Information technology - Microprocessor systems - Control and Status Registers
(CSR) Architecture for microcomputer buses, ISO/IEC 13213, ANSI/IEEE Std
1212, first edition 1994-10-05.

14. J. J. Labrosse, ®C/OS - the Real-Time Kernel, R&D Publications Inc, Distri-
buted by Prentice-Hall, ISBN 0-13-031352-1, 1992.

15. PCI Local Bus Specification, Rev 2.1, PCI Special Interest Group P.O. Box
1470, Portland, OR 97214 USA.

16. SISCI, Standard Software Infrastructures for SCI-based Parallel Systems,
ESPRIT Project 23174, 1997.

17. VME64 ANSI/VITA 1-1994, published by VMEbus International Trade Asso-
ciation, Scottsdale, AZ 85253, USA.

Part VIII

Tools for SCI Clusters

When planning the purchase of a compute cluster, usually much thought is
spent on the choice of compute nodes, interconnects, switches, and—to a les-
ser extent—the operating system and system software. Important software
tools for system configuration, user administration, fault tolerance, debug-
ging, and monitoring are often overlooked. While in small systems, this does
not matter too much, the lack of suitable software tools might become a night-
mare, though, when trying to operate compute clusters for a large, diverse
user community. The following three chapters deal with tools.

In Chapter 24, researchers from Technische Universität München (TUM)
present a network monitoring tool that has been implemented in the context
of their SMiLE project. With the data obtained from a hardware monitor
on their own adapter card (see Chapter 4), the TUM researchers have im-
plemented an infrastructure for the evaluation and controlled deterministic
execution of hardware-supported distributed shared memory architectures.

Based on the Dolphin PCI adapter cards, researchers from the University
of Paderborn have developed a simple but powerful software that allows the
user to observe the utilization of processors and the network. The software
monitor presented in Chapter 25 is intended for administrators to trace the
system status and for users to debug and tune their application. In contrast
to the above TUM project, this monitor does not actively influence the ap-
plication.

Finally, Chapter 26 addresses the important issue of operating large SCI
clusters as general purpose compute servers in a multi-user environment. The
authors from Paderborn present the architecture of their Computer Center
Software (CCS) which provides mechanisms for system partitioning, job sche-
duling, and user access management. With CCS, an SCI cluster is no longer
seen as a collection of machines, but rather as a dedicated high-performance
computer. Hence the focus of CCS is on supporting parallel high-performance
applications rather than throughput computing (which is the prevalent ope-
ration mode for LAN clusters).

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, p. 415, 1999
© Springer-Verlag Berlin Heidelberg 1999

24. SCI Monitoring Hardware and Software:
Supporting Performance Evaluation and
Debugging

Wolfgang Karl, Markus Leberecht, Michael Oberhuber

Lehrstuhl für Rechnertechnik und Rechnerorganisation – LRR
Institut für Informatik der Technischen Universität München
80290 München, Germany
email: {karlw,leberech,oberhube}@in.tum.de
http://wwwbode.informatik.tu-muenchen.de/

24.1 Introduction

The development of a parallel program which runs efficiently on a parallel
machine is a difficult task and takes much more effort than the development
of a sequential one. A programmer has to consider communication and syn-
chronization requirements, the complexity of data accesses, as well as the
problem of partitioning work and data, depending on the underlying pro-
gramming model. Additionally, the potentially nondeterministic behavior of
concurrent activities running on the parallel machine aggravates the test and
debugging phase in the software development cycle. Even when a program
is validated and produces correct results, a considerable amount of work has
to be done in order to tune the parallel program to efficiently exploit the
resources of the parallel machine.

This task becomes even more complicated on architectures supporting
fine-grained execution such as PCs clustered with novel high-speed, low-
latency networks like the Scalable Coherent Interface (SCI). SCI supports
memory-oriented transactions over a ringlet-based network, effectively pro-
viding a global virtual bus. Remote read latencies are on the order of 5μs
for I/O bus-based SCI adapters, as is demonstrated for the LRR-TUM adap-
ter in Chapter 4 as well as in Chapter 3 for the Dolphin adapters. Through
these properties, SCI implements a hardware-supported distributed shared
memory (DSM) system on a network of PCs. On this class of architectures,
communication events cannot be observed easily by appropriate tools since
they are potentially very frequent, comparably short, and cannot be easily
distinguished from local memory reads and writes.

The SMiLE system (Shared Memory in a LAN-Like Environment) [4]
belongs to this class of architectures and represents a network of Pentium-II
PCs clustered with the SCI interconnect. Its NUMA characteristics (non-
uniform memory access) is implemented in hardware and is based on a custom
PCI/SCI adapter described in Chapter 4 that plugs into the PC’s PCI local
bus. A hardware monitor as part of an event-driven hybrid monitoring system

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 417-432, 1999
© Springer-Verlag Berlin Heidelberg 1999

418 W. Karl, M. Leberecht, M. Oberhuber

for the SMiLE PC cluster is able to deliver detailed information about the
run-time and communication behavior of parallel programs. This information
can be utilized by tools for performance evaluation and tuning as well as
debugging [6] [5]. The hardware monitor is being implemented as a second
PCI card and attached to the PCI/SCI adapter side-by-side.

The controlled deterministic execution approach codex [3] provides a ge-
neric method to overcome the problems arising from the nondeterministic be-
havior of parallel programs during the test and debugging phase. It is based
on POEM (Parallel Object Execution Model) [3], a framework for modeling
parallel execution independently from the underlying programming model.
This allows the specification of the requirements for a deterministic execu-
tion of test cases. While for message passing codex can be implemented in a
fairly straightforward way by instrumenting messaging layers, this is not pos-
sible for the DSM-oriented execution of the type of architecture mentioned
above.

This chapter deals with our approach to deliver run-time information
to tools for performance analysis, and to integrate controlled deterministic
execution into the hardware-supported DSM execution paradigm provided by
the SMiLE PC cluster. We will not focus on a particular programming model.
However, remote memory transactions are considered to be the base of any
execution on this machine. Section 24.2 will therefore present in detail the SCI
hardware of the SMiLE cluster and its accompanying hardware monitoring
system. Section 24.3 then provides the background necessary to understand
codex in general, while Section 24.4 explains in detail how this approach can
be mapped onto the SMiLE architecture. A short description of related work
follows in Section 24.5, leading to the conclusion in Section 24.6.

24.2 The Monitoring Approach for the SMiLE PC
Cluster

The SMiLE project at LRR-TUM [4] attempts to leverage SCI technology
to set up, and provide software for, a cost-effective PC cluster to be used
as a high-performance parallel processing platform. One major research goal
is to develop methods and tools for the efficient use of DSM systems with
NUMA characteristics. In order to support this endeavor, we have developed
our own custom PCI/SCI adapter card which allows the attachment of an
SCI hardware monitor.

The PCI/SCI adapter, described in detail in [2], serves as the basis for the
SMiLE PC cluster by bridging the PC’s I/O bus to the SCI interconnection
network. The PCI/SCI adapter intercepts processor-memory operations on
the PCI local bus, generates packets for remote SCI nodes and forwards
them to the SCI network. Vice versa, incoming packets arriving from the SCI
network are transmitted to the neighboring SCI node via the output link, or

24. SCI Monitoring Hardware and Software 419

network

fabric

SCI

B-Link
64

handshake bus

ri
bb

on
 c

ab
le

AA

D D

SCI out

SCI in

B-Link interface
P

C
I

in
te

rf
ac

e
Hardware Monitor

SC
I

un
it

DPR

P
C

I
un

it

PCI/SCI adapter

P
C

I

br
id

ge
PC

I-

main
memory

counter modul

32

static
counter
array

associative
counter
array

event
filter

processor/
cache

Fig. 24.1. The SMiLE SCI node architecture: a PCI/SCI adapter and the hardware
monitor card installed in a PC

are translated into PCI transactions for the local node. SCI address spaces
of the bridge can be mapped into local PCI addresses, allowing read or write
accesses to any of the mapped areas. The PCI/SCI adapter is responsible for
the address translations and the request/response packet generation.

As shown in Figure 24.1, the PCI/SCI adapter is divided into three logical
parts: the PCI unit, the Dual-Ported RAM (DPR), and the SCI unit.

The PCI unit forms the interface to the PCI bus of the local PC host.
Memory transactions of the local processor to the PCI bus referencing a 64-
MByte address window within the physical address space are intercepted and
then translated into SCI transactions. The packets to be sent from the local
SCI node to remote memory are buffered within the DPR. The SCI unit in
turn interfaces to the SCI network and performs the SCI protocol processing
for packets in both directions. Here, the B-Link, a 64 bit-wide synchronous
bus connecting the SCI unit and the DPR, serves as the carrier of all incoming
and outgoing packets to and from the SCI interface.

The SMiLE SCI hardware monitor as part of the event-driven hybrid
monitoring approach is attached to the PCI/SCI adapter as an additional
PCI card as shown in Figure 24.1. The B-Link is the central point on which
all remote memory traffic can be monitored. The information that can be
recorded from the B-Link includes the transaction command, the target and
the source node IDs, the node-internal address offset, and the data.

The flexible architecture of the hardware monitor allows the programmer
to utilize it in two working modes for performance analysis: the dynamic
and the static mode. The dynamic working mode (Figure 24.2) is suitable
for delivering detailed information to tools for performance evaluation and
tuning. In order to be able to record all data of interest with only limited

420 W. Karl, M. Leberecht, M. Oberhuber

tag

tag

tag

tag

tag

memory

reference hit?

ring buffer

stuffed?

.

counter #1

counter #2

counter #3

counter #4

counter #5

PC

associative
counter array

mov %esi, %ecx

mov %dx, (%esi)

mov %esi, %ebx

add %dx, (%esi)

pushf

.

.

tail ptr

head ptr
memory

Interrupt

main

ring
buffer

array filled up?

counter

Fig. 24.2. The hardware monitor’s dynamic mode working principle

hardware resources, the monitor exploits the spatial and temporal locality
of data and instruction accesses in a way similar to cache memories in high-
performance computer systems. Memory access events detected through this
mechanism are then counted in a register file which is implemented as a
content-addressable counter array managing a small working set of the most
recently referenced memory regions. The remote memory accesses are detec-
ted by monitoring the B-Link. If a memory reference matches a tag in the
counter array, the associated counter is incremented. If no reference is found,
a new counter-tag pair is allocated and initialized to 1. If no more space
is available within the counter array, first counters for neighboring address
areas are merged or a counter-tag pair is flushed to a larger ring buffer in
main memory. This buffer is supposed to be emptied by some performance
evaluation tool in a cyclic fashion. In the case of a ring buffer overflow, a sig-
nal is sent to the software process urging for the retrieval of the ring buffer’s
data.

As the amount of flushing and re-allocating counter-tag pairs should be
reduced, it makes sense to integrate the strategy of adapting counter coverage
into the cache replacement mechanism. Under the prerequisite that counter
tags can name not only single addresses but also contiguous memory areas
for which the counter is to register the accesses, a simple least-recently-used
(LRU) replacement algorithm can be adapted to this special task. The maxi-
mum address range, however, has to be predefined by the user. The method
is called Dynamic Coverage LRU and is shown in Figure 24.3.

A detailed description and the rationale of the hardware monitor’s dy-
namic working mode is given in [5]. As shown in that paper, a size of 16

24. SCI Monitoring Hardware and Software 421

determine oldest tag,

flush counter-tag pair

small enough distance
to another tag?

a free tag can be found?

already present within a tag?
count address event,

Y

Y

Y

N

N

N

wait for incoming address reference

possibly indicate overflow

set new tag

tag limits

adapt

Fig. 24.3. The Dynamic Coverage LRU mechanism

counter-tag pairs is sufficient for the associative counter array in typical ap-
plications.

The static working mode allows users to explicitly program the hardware
for event triggering and action processing on SCI regions. Figure 24.4 shows
a simplified view of the hardware structure used to realize that feature.

The event filter comprises a page table and the event station. In combina-
tion, both implement the ability to monitor memory regions and particular
transactions upon them. The page table contains the page descriptors, uni-
quely describing the pages within the SCI address space which are to be
monitored. A page table’s descriptor is formed by the SCI node number, and
the page frame address within the node’s address space, together with some
state information for that page.

The event station specifies the exact events on which the monitor triggers.
An entry within this hardware structure points to a page descriptor within the
page table. The bottom and top address fields specify the address range to be
monitored within the indexed page, while the transaction type can be used to
restrict the SCI transactions to be registered. The transaction type consists
of several flags for the events that can be monitored (read, write, and lock
transaction, request and response transaction, incoming or outgoing packets,
codex mode).

During performance analysis, each counter within the static counter ar-
ray is able to act in three possible ways on the events described in the event
station. While two of these ways are used to enable and disable the counter,
the third way triggers the actual event counting. Enabling and disabling a
counter temporarily is useful for hybrid monitoring approaches in which, e.g.,

422 W. Karl, M. Leberecht, M. Oberhuber

event selectorstatic counter array

page j+2

page j+1

page j

SCI
address
space

page table event station

SMiLE hardware monitor

PCI/SCI adapter

codex modeevent counting (performance analysis mode)

nodenum pagenum

counter 0

counter k-1

enable disable count

transaction

page descriptors

active event
readsb
writesb
locksb
request
response
in/out
codex

counter 1

page frame

page frame top

top bottom

bottom transactionstate

SCI transaction
and buffer

management

ji

node i

type

type

Fig. 24.4. The monitor’s static mode hardware structures

only memory accesses during certain function invocations are to be monito-
red. An easy instrumentation of the function entry and the exit, generating
events to switch on and off the respective counter, serves this purpose.

In order to support the controlled deterministic execution approach codex
which will be explained shortly, the hardware monitor can be reconfigured.
Instead of routing the recognized events to the counters, a set codex mode
flag in the event station forces this signal to be provided to the transaction
processing on the PCI/SCI adapter card. This particular way of using the
monitor opens up new possibilities for debugging and testing fine-grained
parallel programs on hardware-supported DSM architectures.

In addition to the hardware structures described, a number of registers
and logic is necessary for configuration and control of the monitor. A physical
implementation of the hardware monitor is currently under development.

24.3 The Controlled Deterministic Execution Approach
(CODEX)

Controlled deterministic execution provides a method to overcome problems
arising during a very important phase of software development of parallel
programs, the phase of testing and debugging. Here, the degrees of freedom
in the order of accesses to common resources may result in undesirable non-
deterministic behavior. In the case of SCI, common resources are memory

24. SCI Monitoring Hardware and Software 423

regions of the common address space. With codex, the nondeterminism can
be eliminated as far as it is necessary.

Codex is an independent approach to provide controlled execution for
a couple of parallel programming models and environments. The indepen-
dence is guaranteed by an abstract, object-oriented modeling method. This
method is called POEM (Parallel Object Execution Model). Through its
object-oriented nature, it is possible to adapt it to various communication
models. The basic classes are called Execution Objects (EOs) and Common
Objects (COs). EOs represent all kinds of threads of execution, i.e. processes,
threads, or tasks. The media for the exchange of data, shared memory in
case of SCI, is represented by COs. Accesses to COs, that represent com-
munication operations, are reduced to two elementary operations: read and
modify.

Accesses to COs by EOs are formulated using these elementary operati-
ons. Modify and read are utilized to construct the access modes to shared
resources actually occurring in an application. While modify is regarded as a
nonblocking operation, read has to be blocking by default. An example of a
POEM is shown in Figure 24.5. A detailed presentation can be found in [3].

thread4

thread2

thread1

producers consumers

thread3

Bench
thread1

modify
read

Execution
Context

Object

Execution
Object

Common

Fig. 24.5. POEM representation of a producer-consumer example

To enhance the representation and to provide scalability of POEM, we
introduce contexts. A context is a group of objects of the same type. An
Execution Context is a bag of EOs, while a Communication Context comprises
a set of COs. Contexts behave like single objects. Therefore it is possible to
hide a group of threads in a single context, thus increasing transparency. In
Figure 24.5, we can see two contexts indicated by dotted lines: one for the
producers and one for the consumers of the example. Figure 24.6 shows the
reduced presentation as contexts.

424 W. Karl, M. Leberecht, M. Oberhuber

For the specification of the communication behavior that needs to be
enforced, some description technique is required. The description technique
in our case is a context-free language that is called Control Patterns (CPs).
It is based on POEM and allows the user to specify access sequences to COs.
Unlike previous work [11], which uses a complete sequence of all relevant
accesses, our first goal with CPs is to restrict the description to selected COs.
Thus, we avoid long and tedious descriptions. Second, we reflect the fact of
periodic repetitions of accesses to COs in our language. A pattern is exactly
the description of periodic repetitions. Table 24.1 presents an overview of
available operations to describe CPs. While the basic operations are similar
to regular expressions, extended operations are especially suitable for the
description of cyclic accesses.

Basic operations:
a � a′ – a has to be fulfilled before a′

ax – a must be fulfilled exactly x
times

a+x – a has to be fulfilled at least
once but at most x times,
x ∈ N ∪ ε

Extended operations:
a! – a has the highest priority at

the CO as long as it does not
access another CO or it is
blocked respectively.

a# – a has the highest priority at
the CO as long as it is not
blocked.

Table 24.1. Operations of Control Patterns

The codex approach enforces the parallel program’s execution according
to such CPs.

Figure 24.6 shows the previous example enhanced with a simple CP not-
ation which illustrates the use of contexts in the pattern expression. The
notation guarantees alternate accesses of threads to the CO Bench from dif-
ferent logical thread groups, the producers and the consumers. The expression
has to be interpreted as follows: before a consumer is allowed to access Bench,
a producer has to modify it, and before the producer may put the next item
on the bench, one item has to be consumed, due to the ’+’ operator. Thus,
there is at most one item on the bench during the whole execution.

In a practical implementation, CPs correspond to restricting or enabling
read and modify operations for the execution in a particular order. In essence,
this requires explicit control over communication at the receiver’s end of a
connection.

A remaining question refers to the generation of a POEM and the de-
rivation of CPs. In general, there are four possible sources for a POEM:
specifications of program behavior, static analysis, event traces, and interac-
tive composition by users. Currently, the description of CPs is carried out
manually and is also supported by a graphical user interface. After the decla-

24. SCI Monitoring Hardware and Software 425

Bench

+
P(Bench): (producer > consumer)

consumerproducer

modify
read

Execution
Context

Object

Execution
Object

Common

Fig. 24.6. The producer-consumer example with a Control Pattern

ration, all necessary information, the control information in particular, is
delivered to the system controlling the execution.

A more detailed discussion of CPs and their use can be found in [10].
After this presentation of the idea of codex, the next section encompasses the
adaptation of POEM to the runtime environment of the SMiLE cluster and its
communication paradigm. With the adaptation we will be able to formulate
Control Patterns to test or debug a variety of different access sequences to
selected memory regions by using the hardware monitoring facilities.

24.4 Controlling Execution with SMiLE

24.4.1 Mapping POEM to the SMiLE Architecture

POEM’s abstract model objects must have a counterpart in the SMiLE run-
time environment. EOs map easily and naturally represent any task running
on the SMiLE architecture. Depending on the programming model, these can
be whole processes or single threads. COs on the other hand refer to either
single memory cells or complete memory regions, which again will depend on
the programming model of the application. Referring to a whole region is use-
ful if a programmer thinks in terms of larger data structures instead of single
memory cells. Accesses can be mapped in a straightforward way: SCI remote
read transactions, e.g., the 16-byte selected-byte read (readsb), are an exact
analogy to POEMs read operations. Similarly, SCI remote write transactions
like the writesb and SCI remote read-modify-write transactions like locksb
can be identified as POEM’s modify operations. Table 24.2 summarizes these
relationships.

426 W. Karl, M. Leberecht, M. Oberhuber

POEM entity SMiLE component
execution object process

thread
common object memory cell

memory region
read access SCI remote read transaction (readsb)

modify access SCI remote write transaction (writesb)
SCI remote lock transaction (locksb)

Table 24.2. Mapping of POEM model objects to components or activities of the
SMiLE architecture.

24.4.2 Controlling Execution on SMiLE

A challenging task for the use of codex on SMiLE is the part of controlling
the parallel application at runtime or, in POEM terminology, of implemen-
ting an on-line Control Pattern method on this kind of architecture. The CP
for this POEM imposes a particular total order on communication operations
referring to a CO. It is therefore our task to enforce a particular execution or-
der of SCI remote memory operations on common memory regions. Basically,
this can be done at two locations:

1. At the active side of the communication, i.e., at the site of the EO. On
SMiLE, this means controlling the processor triggering a remote memory
access.

2. At the passive side of the communication, i.e., at the site of the CO. On
SMiLE, this means controlling the execution of an SCI transaction at the
receiver node.

While the first method seems more natural, it is actually quite difficult to
be implemented. From the programmer’s and the processor’s point of view,
memory operations via SCI look identical to regular memory operations. The
only difference is in the address, since SCI transactions are started whenever
a particular address window is accessed. Filtering out remote memory ope-
rations here would consist of detecting an address space during runtime, a
task usually performed by the memory management unit (MMU) of the pro-
cessor. An access to a certain window would trigger an exception and result
in starting an appropriate interrupt service routine (ISR), which would have
to perform the appropriate actions for realizing codex.

The SMiLE approach to controlled deterministic execution combines this
method with the second solution. As the CP governs accesses to the CO, it
is easier to be implemented on the SMiLE hardware. The SCI transactions
are split into a request and a response sub-action, thus the receiving side of
the communication provides an ideal location for the necessary intrusion into

24. SCI Monitoring Hardware and Software 427

communication behavior. Controlling execution on SMiLE thus comprises the
following three steps:

1. Detection of accesses to COs. The SMiLE hardware monitor on the desti-
nation node and the MMU on the local node serve as detectors of accesses
to COs by checking the address of each transaction. While the monitor
signals this by a simple trigger line to the PCI/SCI adapter, the pre-
viously mentioned coupling between the event filter and the PCI/SCI
transaction processing on the adapter card, the MMU raises an excep-
tion on the local processor. The reasons for using the MMU are twofold.
First, it is the only means for detecting accesses if COs and EOs are lo-
cated on the same node in the system. Additionally, it avoids stalling the
local processor during a remote read operation, thus avoids deadlocks in
servicing concurrent CP executions.

2. Saving accesses in a transaction pool. The signal causes the slightly mo-
dified PCI/SCI card not to execute the incoming transaction request,
thus using the DPR buffers for intermediate storage of the SCI request.

3. Execution of accesses according to the predefined CP. From the transac-
tion pool, SCI memory operations can then be executed under software
control, the appropriate response sub-actions can be generated and sent
back to the originator.

The first two steps can be performed with the existing SMiLE hardware
while the third activity is part of the software package implementing codex
for a particular programming model. The SMiLE monitor is used to “snoop”
SCI transactions on the B-Link connecting the DPR and the Link Controller
on the PCI/SCI adapter. The event filter is thus used to detect any access
to a CO on the node placed on the remote side of a memory transaction.

In detail, the mechanism works as follows: the address recognition in the
monitor event filter generates a signal that is routed back to the PCI/SCI
adapter card via the flat ribbon cable. The PCI/SCI adapter is modified such
that it does not execute an incoming transaction that has been placed in the
DPR by the SCI unit of the card. Progress of the incoming SCI transaction
that would normally be translated into appropriate PCI transactions, is stop-
ped here. Fortunately, the microcode sequencer controlling the PCI side of
the adapter can be programmed easily to perform this task. This also de-
monstrates the flexibility of the microprogrammed implementation approach
for the PCI/SCI adapter as described in Chapter 4.

Only by directly routing the detection signal into the PCI/SCI adapter
it is possible to meet the tight timing requirements of this approach, as the
latency after the arrival of an SCI transaction until its access to the node’s
PCI bus is only about 1.2 μs [1]. This naturally leaves no room for operating
system-based signals and software solutions up to this point.

428 W. Karl, M. Leberecht, M. Oberhuber

The third step, however, is finally up to the software. Software interpreta-
tion of the readable DPR buffers as well as simply letting the adapter execute
the transactions by selectively re-enabling them are two possible ways to do
this.

24.4.3 A Framework for an Implementation of CODEX for
Fine-Grained DSM Execution

The previously mentioned extensions to the SMiLE SCI hardware allow us
to build a software system that realizes controlled deterministic execution.
This section will give a brief outline of a facility that forms the basis of such
systems. The following steps have to be implemented:

1. Generation of a CP according to the formalism described in Section 24.3.
This is a task beyond the scope of this paper and is covered by the user
interface to codex.

2. Establishing a mapping between COs and shared memory regions as well
as a mapping between EOs and processes or threads on their nodes for
the given application. This again depends massively on the programming
model and is discussed no further here.

3. Use of the SMiLE hardware to enforce CPs on COs, i.e., memory accesses
to particular regions. This comprises:
– Presetting the monitor event filter to the address regions belonging to

the COs.
– Setting the software-implemented state machines that represent the

CPs to their initial states.
– Setting up the appropriate EO-side CP structures at the nodes of the

EOs. This includes setting read protection through the MMU.
– Execution of each EO on each node can thus be started. The codex

functionality is automatically invoked at each read access to a CO by
means of a page fault handler.

Figure 24.7 displays how the different parts of the system work together.
On the node running an EO, MMU read protection is enabled for those
memory areas containing COs, while store operations are forwarded via SCI
to the remote node hosting the COs. An attempted read of a CO therefore
causes the codex system to be invoked. As data is needed for continuing the
EO execution and this data has to be consistent with the previously described
CP, the node hosting the COs is requested to perform whichever transaction
in its request buffers conforms to the CP. Finally, result data is returned to
the EO node, allowing it to restart the original read operation.

For COs and EOs being on the same node, the identical mechanism can
be implemented by merely using the MMU for read and write protection of

24. SCI Monitoring Hardware and Software 429

CO1

CO2

node Bnode A

(empty)

control pattern of CO1

control pattern of CO2

SCI NI

SCI NI

EO side part of
control patterns CO1/2

MMU page
fault detection

store to CO2

store to CO1

execution object
(e. g. thread)

SMiLE SCI communication

y

in data memory
common objects

SCI adapter & monitor extension

load from CO1

flag
exec

buffer
transaction

(empty)

store CO1
store CO2

n
n

y

communication
control pattern

Fig. 24.7. Technical implementation of the codex functionality on the SMiLE SCI
hardware

COs. While for a write page fault, accesses are queued in an area comparable
to the SCI request buffers, the read protection invokes the same routines as
in the previously explained distributed case.

Flushing the buffer, i.e., starting the processing of the buffered transac-
tions due to a CP, is necessary before a buffer overflow might occur. Buffer
space on the PCI/SCI adapter is naturally limited, yet it is hard to foresee
generally by statical analysis how many write transactions will actually occur
until the buffers in the network interface (NI) can be flushed. Thus, codex
requires a conservative buffer management, implemented through a simple
round-robin execution approach. For a maximum number of N buffers reser-
ved for controlled deterministic execution1, we require that each node hosting
EOs must not issue more than N write transactions before the codex ma-
nagement is invoked again. Instrumentation of the application is a safe way
to do this: a call graph analysis reveals which machine operations in which
basic blocks are candidates for CO accesses. Should a walk through the graph
indicate that the amount of N write operations to COs will potentially be ex-
ceeded, additional calls to the CP management can be inserted. These calls as
well as the page fault handler-invoked CP software cause non-serviced write
transactions to be flushed out of the NI card buffers into the same CO-sided
queues that are also in use for single-node shared memory. After that, the
next node, or rather the next EO, can be selected to be run the same way.

1 It is advisable to use only a fraction of the actual number of buffers for codex as,
e.g., management communication of the codex system should go undisturbed.

430 W. Karl, M. Leberecht, M. Oberhuber

24.5 Related Work

Only a few DSM monitoring projects so far focused on providing hardware
support for hardware-based distributed shared memory. The performance
monitor for the Princeton SHRIMP multicomputer [8] is one example. It
can be configured to run as a trace monitor, using a high amount of local
memory to store local traces without probe effect, or as a multidimensio-
nal histogram monitor. For the CC-NUMA FLASH multiprocessor system
[7], the hardware-implemented cache coherence mechanism is complemented
by components for monitoring fine-grained performance data (number and
duration of misses, invalidations, etc.) [9]. Some multiprocessor systems ex-
ploit information gathered by hardware counters incorporated within modern
CPU chips (DEC Alpha 21164, Intel Pentium processors, MIPS R10000) for
performance analysis [12]. Yet, none of these systems actually attempts to
influence program behavior in addition to performance measurement.

24.6 Conclusion

This chapter introduced the rationale, concept, and implementation of an
infrastructure enabling performance evaluation and controlled deterministic
execution on hardware-supported DSM architectures. The SMiLE system [4]
served as the example for such a system in which PCs are clustered by a
modern low-latency and high-speed interconnect like SCI.

While the fine-grained nature of communication on this class of parallel
and distributed computers provides the advantages of a finer grain of compu-
tational activities, it aggravates the development of efficient parallel programs
on these machines. For both performance analysis and debugging, observabi-
lity of communication is one of the key elements of gaining insight into the
behavior of the program under test.

For this task, the SMiLE hardware monitor card offers the only possi-
bility to detect the sizes, the points in time, or the destination addresses
of the underlying SCI memory transactions. For performance analyses, this
information can be logged in the nodes’ main memories in an efficient man-
ner w. r. t. both time and space requirements. A second task of a monitor
usually consists of influencing the behavior of a program run. Again, the
combination of the SMiLE monitor card and the SMiLE PCI/SCI adapter
provides the means for this by selectively detecting and stalling incoming
SCI transactions. A software part of a hybrid monitoring system is now free
to re-enable these transactions explicitly and thus introduce explicit control
into the memory-oriented communication provided by the SMiLE system ar-
chitecture. We presented the codex system as an example of the power of this
approach. Controlled deterministic execution that is normally only conside-
red feasible for message-passing execution is made possible for a distributed

24. SCI Monitoring Hardware and Software 431

shared memory system model. By this, the SMiLE monitor is a unique tool
both for performance debugging as well as for program testing.

The SMiLE hardware monitor is currently being implemented as an
FPGA-based PCI card. The VHDL-based design flow helps to keep the design
and some architectural parameters such as the numbers of counters as flexible
as possible. In [5] we have shown that its cache-like architecture, exploiting
temporal and spatial locality of remote memory accesses, enables us to build
a resource-saving hardware even for heavy performance monitoring, while
avoiding most of the undesirable probe effect of software instrumentation.

References

1. G. Acher, H. Hellwagner, W. Karl, and M. Leberecht. A PCI-SCI Bridge for
Building a PC Cluster with Distributed Shared Memory. In Proc. 6th Interna-
tional Workshop on SCI-based High-Performance Low-Cost Computing, pages
1–8, SCIzzL, Santa Clara, CA, Sept. 1996.

2. G. Acher, W. Karl, and M. Leberecht. PCI-SCI Protocol Translations: Applying
Microprogrammable Concepts to FPGA. In R. Hartenstein and A. Keevallik,
editors, Proc. 8th International Workshop on Field Programmable Logic and
Applications (FPL’98), volume 1482 of Lecture Notes in Computer Science,
pages 99–108, Springer Verlag, Aug. 1998.

3. M. Frey and M. Oberhuber. Testing and Debugging Parallel and Distributed
Programs with Temporal Logic Specifications. In Proc. 2nd Workshop on Paral-
lel and Distributed Software Engineering, pages 62–72, IEEE Computer Society,
May 1997.

4. H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High-
Performance Computing. SPEEDUP Journal, 11(1), June 1997.

5. R. Hockauf, W. Karl, M. Leberecht, M. Oberhuber, and M. Wagner. Exploiting
Spatial and Temporal Locality of Accesses: A New Hardware-Based Monito-
ring Approach for DSM Systems. In D. Pritchard and J. Reeve, editors, Proc.
4th International Euro-Par Conference (Euro-Par’98), volume 1470 of Lecture
Notes in Computer Science, Springer Verlag, Sept. 1998.

6. W. Karl and M. Leberecht. Ein Monitorkonzept für Systeme mit verteiltem
gemeinsamen Speicher. In R. Hoffmann, B. Klauer, C. Müller-Schloer, K. D.
Reinartz, and H. C. Zeidler, editors, ARCS’97: Architektur von Rechensyste-
men 1997. Vorträge der Workshops im Rahmen der 14.ITG/GI-Fachtagung,
Universität Rostock, pages 169–178, Sept. 1997.

7. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and
J. Hennessy. The Stanford FLASH Multiprocessor. In Proc. 21st International
Symposium on Computer Architecture, pages 302–313, ACM, 1994.

8. M. Martonosi, D. W. Clark, and M. Mesarina. The SHRIMP Performance
Monitor: Design and Applications. In Proc. 1996 SIGMETRICS Symposium
on Parallel and Distributed Tools (SPDT’96), pages 61–69, ACM, May 1996.

9. M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Performance Moni-
toring and Communication in Parallel Computers. In Proc. 1996 SIGME-
TRICS Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS’96), ACM, 1996.

432 W. Karl, M. Leberecht, M. Oberhuber

10. M. Oberhuber, S. Rathmayer, and A. Bode. Tuning Parallel Programs with
Computational Steering and Controlled Execution. In Proc. HICSS-31, pages
157–166, Jan. 1998.

11. K. Tai and R. Carver. Testing Distributed Programs. Chapter 33 of Parallel
and Distributed Computing Handbook. McGraw Hill, New York, USA, 1996.

12. M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance Analysis Using
the MIPS R10000 Performance Counters. In Proc. Supercomputing (SC’96),
1996.

25. Monitoring SCI Clusters

Matthias Maier-Stahel1, Roger Butenuth2, Hans-Ulrich Heiss3

1 University of Paderborn, Germany
email: stahlie@uni-paderborn.de

2 University of Paderborn, Germany
email: butenuth@uni-paderborn.de
http://www.uni-paderborn.de/cs/butenuth.html

3 University of Paderborn, Germany
email: heiss@uni-paderborn.de
http://www.uni-paderborn.de/cs/heiss.html

25.1 Motivation

The more complex a computer system is, the more important it is to get
relevant information about its operational state. In a multi-user environment,
there is usually an operator or administrator who is responsible for smooth
operation. He or she needs to be aware of any abnormal behavior, e.g. node
failure, overload situations, deadlocks, bottlenecks or other situations related
to availability and performance. To that end, a console is used to inform the
operator about the state and the behavior of the machine at one single place.

In a system with a single copy of the operating system (e.g. an SMP
system), such a console is a standard feature. An SCI cluster, however, is
more complicated. Although it provides physically shared memory and can
therefore be considered a NUMA multiprocessor, its ”look and feel” to the
user is rather a collection of autonomous nodes each running a complete
and independent local operating system. Redirecting console output of the
individual nodes to a central terminal is possible but not sufficient, since
a node usually simply crashes without sending a message in advance. An
operator of an SCI cluster would have to probe the nodes to make sure that
all of them are up and running.

In addition to the operational states of the nodes, the operator also wants
more detailed information about the utilization and performance of the sy-
stem, since any anomaly in system behavior may indicate a situation that
needs human intervention. A component that provides this kind of informa-
tion is usually called a monitor. A monitor observes the system by sampling
relevant system measures, such as utilization, throughput, and other quanti-
ties and makes these measurements available for on-line or off-line analysis.
In a multi-programming environment, it should be possible to attribute the
measured quantities to the individual programs, offering some insight into
their behavior. By providing this functionality, a monitor can help the pro-
grammer debug the parallel program or reveal design flaws leading to poor
performance. The monitor provides a global bird’s-eye view of the system,
which is usually not available in a distributed system.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 433-441, 1999
© Springer-Verlag Berlin Heidelberg 1999

434 M. Maier-Stahel, R. Butenuth, H.-U. Heiss

In the following, we present a monitoring tool that has been developed for
SCI cluster computers. Section 25.2 gives an overview of its general structure.
Sections 25.3 – 25.5 describe the major components and the way they interact.
A short conclusion in Section 25.6 closes this chapter.

25.2 General Architecture

The architecture of a monitoring tool for a cluster machine derives quite na-
turally from its distributed architecture. On each node, a local monitoring
agent is needed that samples data locally and provides it to a central master
component for combination and further processing. The communication pro-
tocol between the agents and the central master is one of the major design
issues, which will be discussed shortly. The data collected by the master is
made available to other components. One of these clients is the visualizer that
presents the performance data to the human user in an easily comprehensible
way and provides a global view on the system’s state. Another component fed
by monitoring data is the alarm tool, which can be used in addition or instead
of the visualization component. In its first and basic version, it simply calls
for the user’s attention acoustically and visually if one of the nodes crashes.
It can be enhanced by more flexible trigger conditions defined by the user.
Another possible user of monitor data could be a cluster resource manager
responsible for optimizing the utilization of the overall machine, e.g. CCS
(see Chapter 26).

The monitor and its components are implemented mainly in C, while
the visualizer is based on Tcl/Tk scripts and the X window system [7]. The
whole package is available for the Intel x86 processor family and also for
Sun SPARC processors. The operating systems supported are Linux and
Solaris. The monitor also works in a heterogeneous cluster, since it uses the
Sun XDR presentation layer software [1] to perform data conversion for any
cross-platform communication. All communication within the monitor and to
the outside world is based on standard TCP/UDP/IP protocols. Therefore,
any communication medium can be used, as long as it is fast enough and
IP multicast is available. In the current implementation, Fast Ethernet is
employed. Figure 25.1 shows the layers of the resulting monitoring system.

25.3 Monitor Agents

The main purpose of the monitor is to assist the system administrator in
running the cluster. Although it is also helpful for debugging, this is not the
major goal. Monitoring for operating systems is targeting at rather coarse
time scales. It is therefore sufficient to get averaged data using a time driven
approach. Triggered by the master periodically (e.g. each second by default),

25. Monitoring SCI Clusters 435

Visualizer Alarmtool ...

Master

Monitor 1 Monitor 2 ... Monitor n

Fig. 25.1. Monitoring system

the local monitor agents respond by sending the status and measurement
data back to the master.

The relevant data the monitor provides can be divided into static data and
dynamic data. The static data is collected when the monitor is started and
does not change during the runtime of a system. Dynamic data results from
measurements taken over time, by calling appropriate commands specific for
each operating system.

1. Static data:
– host name
– IP address of the host
– version of the operating system
– type of processor
– number of processors
– amount of main memory
– amount of swap space
– amount of disk space of the root partition
– SCI ID of the node

2. Dynamic data:
– average load of the processors
– amount of main memory used
– amount of swap space used
– amount of disk space used (root partition)
– SCI error rate (Linux only)
– existence of two processes needed by the cluster management software

(CCS)

By encapsulating all data specific actions into separate procedures the set of
data monitored can be expanded easily.

Generally, the collection of the local data at the central site can be initia-
ted either by the local agents or by the central master. As with all software
monitors, the observer influences and distorts the observed system. Especially

436 M. Maier-Stahel, R. Butenuth, H.-U. Heiss

in a parallel computer where the processes of a parallel program may com-
municate synchronously, care should be taken not to disturb the programs
too much. Each activation of a local monitoring agent causes an interruption
of the local application process and results in a delay. If the agents take the
initiative to update the measurements, then, in the worst case, all agents will
become active one after the other and the delays at the nodes will mutually
aggravate each other, resulting in poor performance of the application. To
prevent this situation and to minimize the impact of monitoring on program
behavior, we use a polling approach where the master requests the updates
from the local agents in a multicast operation. The multicast enforces the
data collection in a rather synchronous way so that all nodes are delayed
roughly at the same time.

25.4 Master

The monitor has been designed to be used in cooperation with the CCS
Resource Management Software (see Chapter 26). Because CCS manages the
cluster computer it holds the necessary information about its architecture,
such as number and names of nodes, interconnection topology, and makes it
available to the monitor master in a file. Having read this data, the master
builds a data structure for each node containing its static and dynamic data.

After this initialization, the master periodically sends multicast messages
to the cluster nodes requesting an update of measured quantities. The moni-
tor agents respond by sending the requested information back to the master.
Multicast has been used to achieve a high degree of synchronization in mes-
sage delivery at a low overhead. Compared to broadcast it is more flexible,
since it allows to distinguish different clusters in the same subnet. Multicast
is based on the User Datagram Protocol (UDP), which is the connectionless
alternative to TCP in the Internet protocol suite [2]. The smaller overhead
of UDP results from the fact that UDP does not care about packet loss.
Although packet delivery at the hardware level is reasonably reliable within
a cluster machine, packets may get lost due to overloaded nodes and buffer
overflow. Dealing with packet loss by retransmission would be too expensive
and inappropriate in this case. The loss of a packet only means the loss of
one sample of a single node, which is simply replaced by the sample acquired
one time step before. The monitor agents are also using UDP to return their
measurements.

UDP messages are numbered so that the answer of a node can be matched
to the corresponding request of the master. This enables the master to reco-
gnize whether an answer is out of date. Outdated answers are simply dropped
but counted. If there are k (default: k=5) answers missing, the master decides
that the node has crashed and marks its data structure accordingly.

Besides the measurements from the nodes, the master receives information
about the partitioning of the cluster by CCS. Each time the allocation of

25. Monitoring SCI Clusters 437

cluster partitions to the parallel programs changes, the master is notified. The
data collected by the master is made available to other components through
a small interface library. There are currently two tools using monitoring data:
the visualizing tool and the alarm tool. The general communication structure
and the protocols used are shown in Figure 25.2.

Fig. 25.2. Communication structure

25.5 Visualizer

The visualizer is a graphical front-end which displays the data collected by
the master in order to provide a global and easily comprehensible view on the
system and its state. It is intended to be used by the system administrator
but also by users running parallel programs.

At start-up the visualizer first connects to the master and demands de-
tailed information about the cluster as a whole. This is basically the same
information that the master obtained from the CCS, i.e. the number of nodes
and their names, and the topology of the interconnect. In a second step, the
static data of the individual nodes is requested. Both types of information
are kept in local data structures of the visualizer. The dynamic data is re-
quested periodically, with a rate adjustable by the user. The default value is
five seconds. The master replies to these requests by sending the whole list
of node specific data as well as the CCS information. To draw diagrams that
visualize the variation of the data over time, the actual values of the most
recent τ measurements are stored.

438 M. Maier-Stahel, R. Butenuth, H.-U. Heiss

The communication between the visualizer and the master is based on the
reliable TCP (Transmission Control Protocol), which is preferable to UDP
whenever its larger overhead is uncritical. Since there are only a few visuali-
zers running at the same time, the master is able to service the corresponding
TCP connections. To provide the whole picture for the user, the visualizer
shows the data of each node separately. The visualizer is designed to support
meshes and tori up to a dimension of three. Since there are currently only 2D
meshes or tori in use, the layout of the visualization window corresponds to
the cluster topology and shows the nodes arranged in a 2D matrix. For 3D
topologies each 2D plane would be shown separately.

Each node is represented as a square icon with a bar chart indicating the
quantitative data. The user can configure which parameter of the data set is
shown by which bar and the assignment is indicated by a legend. The values
displayed by the bars are percentages of their maximum values. To increase
the readability for the human user, the bars also change their color from
blue to red as the numbers increase. In each bar, a horizontal line indicates
the average value, calculated as the arithmetic mean over all nodes. So it is
easy to see whether a node is above or below the average and by how much.
The bar chart representation is the result of a small empirical study that
was carried out in cooperation with the visualization research group of the
University of Paderborn. Among a handful of different graph types proposed
for data representation, the bars turned out to have the best readability.
Failed nodes are shown as crossed out icons. As mentioned in Section 25.3,
the existence of critical system processes (used by CCS) is also monitored.
In case of a failure of one of these processes, the node icon is crossed out by
a yellow cross, while a total node failure is shown by a red cross.

The partitioning of the cluster to different parallel programs is visualized
by different frame colors of the squares. Free nodes are shown in black. The
colors of the partitions and the names of the occupying programs are depicted
at the bottom of the window. Figure 25.3 shows a screen-shot of the visualizer
window. It presents the state of a cluster which is connected as an 8×4 torus.
Currently, there are three partitions in use, one consisting of 16 nodes placed
at the bottom, eight nodes above them and two in the upper right corner.
The scalability of the visualizer in terms of the number of nodes that can be
shown with sufficient readability is naturally limited by the space available
on a standard 17-inch or 19-inch display. However, since the size of the icons
is adjustable, they can be made smaller to fit even hundreds of icons on a
screen. The readability will clearly suffer, but the bar charts in connection
with the color encoding are able to catch the viewer’s attention, especially
in situations with uneven load distribution, since even in small icons highly
loaded nodes appear as red blocks, contrasting conspicuously to lightly loaded
nodes shown in background color.

More detailed information about a node is available in separate windows.
Each node is represented by such a window, which pops up whenever the

25. Monitoring SCI Clusters 439

Fig. 25.3. Graphical front-end

440 M. Maier-Stahel, R. Butenuth, H.-U. Heiss

corresponding icon is clicked by a mouse button. The window consists of two
parts. The upper part shows a textual description of the node including the
static and the dynamic data as numerical values as well as the data provided
by CCS. The lower part of the window shows some curves displaying the
values of selected measures over the last τ samples. Such a window is shown
in Figure 25.4.

Fig. 25.4. Node-specific window

25.6 Conclusion

Computer clusters are difficult to manage if there is no single system image
available. The monitoring tool is one step to fill this gap by providing a
global view of the operational state of the cluster and its resource utilization.
This information can also help the programmer in debugging and tuning.
Its core consists of local monitoring agents and a central master process
communicating in a master-worker fashion. A visualizer presents the data
collected to the human user in a clear and well readable way. All components

25. Monitoring SCI Clusters 441

are flexible and configurable to meet the users’ needs. A small library makes
the monitoring data available to other components to further improve the
efficiency and ease of use of a cluster computer.

References

1. C. Brown. Programmieren verteilter UNIX-Anwendungen. Prentice Hall, 1994.
2. D. Comer. Internetworking with TCP/IP. Prentice Hall, 1988.
3. A. Langsford, J. D. Moffet. Distributed Systems Measurement. Addison-Wesley,

1993.
4. N. Luttenberger. Monitoring von Multiprozessor- und Multicomputersystemen.

Arbeitsberichte des Instituts für Mathematische Maschinen und Datenverarbei-
tung der Universität Erlangen-Nürnberg, Band 22, Nummer 7, 1988.

5. M. Maier-Stahel. Erfassung und Visualisierung des Systemzustands in
einem Clusterrechner. Universität Paderborn, 1998. http://www.uni-
paderborn.de/fachbereich/AG/heiss/diplomarbeiten/visualisierung.html.

6. A. Nye. Xlib Programming Manual. O’Reilly & Associates, 1988.
7. J. K. Ousterhout. Entwicklung grafischer Benutzungsschnittstellen für das X

Window System. Addison-Wesley, 1995.
8. S. A. Rago. UNIX System V Network Programming. Addison-Wesley, 1993.
9. M. Santifaller. TCP/IP und ONC/NSF in Theorie und Praxis. Addison-Wesley,

1993.
10. K. Waldschmidt (Hrsg.). Parallelrechner: Architekturen - Systeme - Werkzeuge.

B. G. Teubner, 1995.

26. Multi-User System Management on SCI
Clusters

Matthias Brune1, Axel Keller2, Alexander Reinefeld1

1 Konrad-Zuse-Zentrum für Informationstechnik, Takustr. 7, D-14195 Berlin
email: {brune,ar}@zib.de
http://www.zib.de/

2 Paderborn Center for Parallel Computing, D-33102 Paderborn
email: kel@upb.de
http://www.upb.de/pc2/

26.1 Introduction

The growing maturity of hardware and software components has tempted
researchers to build very large SCI clusters with several hundred processors
that are operated as high-performance compute servers in multi-user mode.

In this chapter, we present a resource management software for the user
access and system administration of high-performance compute clusters na-
med Computing Center Software (CCS). It is in day-to-day use since 1992 on
various parallel systems and has recently been adapted to the management
of SCI clusters. CCS provides pluggable schedulers, optimal space partitio-
ning for multiple users, reliable user access, and powerful tools for specifying
resources and services by means of a specification language and a graphical
user interface.

After a brief introduction in the remainder of this section, we describe the
CCS system architecture and the characteristics of its resource description
facilities.

26.1.1 Hardware Scenario

While CCS can be also used for accessing and controlling small heterogeneous
SCI clusters like the one shown in Fig. 26.1a, it was primarily designed for
managing large dedicated compute clusters that are operated in multi-user
mode. Figure 26.1b depicts our 32-node SCI cluster. Its 2D torus topology
is made up of four vertical and eight horizontal SCI rings. Each node is
equipped with two Pentium II processors at the intersection points. Due to
the different physical ring lengths, the vertical and horizontal rings exhibit
different communication bandwidths of 400 and 500 MByte/s, respectively.

Our second system, shown in Figure 26.2, has a peak performance of 86
GFlop/s. It comprises 96 nodes, each with two 450 MHz Pentium II processors
† The work presented in this chapter was done while all three authors were at

Paderborn Center for Parallel Computing, http://www.upb.de/pc2

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 443-461, 1999
© Springer-Verlag Berlin Heidelberg 1999

444 M. Brune, A. Keller, A. Reinefeld

Fig. 26.1. SCI cluster configurations at PC2

Fig. 26.2. Topology of a switched SCI cluster with 96 nodes (=192 processors)

and 512 MB main memory. The SCI rings are routed via a 16-way SCI switch.
Again, this system is also operated under CCS.

26.1.2 Software Scenario

On the software side, our SCI clusters provide a full range of software services
known from other high-performance computing environments. This includes
a spectrum of compilers (Fortran77, Fortran90, C, C++), programming in-
terfaces (PVM, MPI, Active Messages), a parallel debugger (TotalView) and
a performance monitor (Vampir).

With different device drivers for Solaris, Linux and Windows NT it is
possible to run multiple operating systems on different partitions at the same
time. This is sometimes named dynamic domains concept. The dynamic re-
partitioning mechanisms in CCS are based on the low-level ScaConf software
which allows to change partition sizes and to remove nodes in case of failure.

26. Multi-User System Management 445

26.1.3 User Access and System Management

CCS has the same look-and-feel as traditional high-performance computer
management systems. As a matter of fact, CCS originates from the trans-
puter world, where massively parallel systems with 1024 processors had to
be managed [18] by a single resource management software. The first CCS
software release had the following features:

– concurrent user access to exclusively owned resources,
– coherent management of interactive and batch jobs,
– optimal system utilization by dynamical partitioning and scheduling,
– fault tolerance for remote user access via WANs.

We later added various pluggable scheduling strategies, such as deadline sche-
duling and schedulers for multi-site applications. For SCI clusters, optimal
user partitioning over rings and switches have been included.

Thus, compared to workstation cluster management systems like LSF
[16], Codine [10] or Condor [15], CCS is optimized for the efficient handling
of parallel applications considering topology constraints. Due to its modular
concept, the CCS software runs on many UNIX systems such as AIX, Linux,
and Solaris.

In the following, we describe the architecture of CCS and present the
resource and service description tools that are used by CCS to specify the
available system components.

26.2 Architecture of CCS

26.2.1 Island Concept

In a computing site with several high-performance systems one might be
tempted to operate all systems under the supervision of one central resource
management system that has different backends for the various machines.
On the one hand, this approach provides a coherent user and administrator
interface to all machines, but on the other hand, it is inherently vulnerable
to single points of failure. Moreover, the central scheduler—and other criti-
cal software modules—might cause a performance bottleneck. We therefore
introduced the Island Concept [13], where each machine is managed by a se-
parate instance of the CCS software (Fig. 26.3). A CCS island consists of six
components:

– The User Interface (UI) offers X-window or ASCII access to the machine.
It encapsulates the physical and technical characteristics and it provides a
homogeneous access to single or multiple systems.

– The Access Manager (AM) manages the user interfaces and is responsible
for authorization and accounting.

446 M. Brune, A. Keller, A. Reinefeld

� �

 # # � � � � - 0 � 1

� �
! � � � � � - 0 � 1

� �
� � � � � 	
 � � � �

� �
+ � * � � � � - 0 � 1

� � � � � � � 	
 � � �

� � � � � � � �
� � � ' � � �
� + � � � � , � # �

� �
� � � ' � � �
� + � � � � , � # �

Fig. 26.3. Architecture of a CCS Island

– The Queue Manager (QM) schedules the user requests onto the machine.
– The Machine Manager (MM) provides an interface to the machine specific

features like partitioning, scheduling, etc.
– The Island Manager (IM) provides name services and watchdog functions

to keep the system in a stable condition.
– The Operator Shell (OS) is the main interface for system administrators

to control CCS, e.g. by connecting to the system daemons (Fig. 26.4).

26.2.2 User Interface

The User Interface (UI) runs in a standard UNIX shell environment like tcsh.
Common UNIX mechanisms for I/O re-direction, piping and shell scripts can
be used. All job control signals (ctl-z, ctl-c, ...) are supported. The user shell
accepts five commands:

– ccsalloc for allocating and/or reserving resources,
– ccsrun for starting jobs on previously reserved resources,
– ccskill for resetting or killing jobs and/or for releasing resources,
– ccsbind for re-connecting to a lost interactive application/session,
– ccsinfo for getting information on the job schedule, users, job status etc.

The Access Manager (AM) analyzes the user requests and is responsible
for authentication, authorization and accounting (product of CPU-time and
#nodes). CCS is able to handle project specific user management. Privileges

26. Multi-User System Management 447

Fig. 26.4. The CCS operator shell

can be granted to either a whole project or to specific project members, for
example:

– access rights (batch, interactive, the right to reserve resources),
– allowed time of usage (day, night, weekend, etc.),
– maximum number of concurrently used resources.

Virtual Terminal Concept. With the increasing utilization of supercom-
puters for interactive use the support of remote access via WANs becomes
more and more important. Unpredictable behavior and even temporary bre-
akdowns of the network should (ideally) be hidden from the user.

In CCS, this is done by the EM which buffers the standard output streams
(stdout, stderr). In case of a network break down, all open output streams are
sent by e-mail to the user or they are written to a file. A user may re-bind to
a lost session, provided that the application is still running. CCS guarantees
that no data is lost in the meantime.
Worker Concept. In contrast to other parallel systems, each node in an SCI
cluster runs a full operating system with all system functions and tools. The-
refore, a wide range of software packages like debuggers, performance analy-
zers, numerical libraries, and runtime environments is available (Sec. 26.1.2).

Often these software packages require specific pre- and post-processing.
For this purpose, CCS provides the so-called worker concept. Workers are
tools to start jobs under specific run time environments. They hide specific
procedures (e.g. starting of daemons or setting of environment variables) and
provide a convenient way to start programs.

The behavior of a worker is defined in a configuration file (Fig. 26.5) by
specifying five attributes:

448 M. Brune, A. Keller, A. Reinefeld

pvm, #name of the worker
%CCS/bin/start pvmJob -d -r %reqID -m %island, #run command
%CCS/bin/start pvmJob -q -m %island, #parse command
%root %CCS/bin/establishPVM %user, #pre-processing
%root %CCS/bin/cleanPVM %user #post-processing

Fig. 26.5. A worker definition for starting jobs in a PVM environment

– the name of the worker,
– the command for CCS to start the job,
– the optional parse command for detecting syntax errors,
– the optional pre-processing command (e.g. initializing a parallel file sy-

stem),
– the optional post-processing command (e.g. closing a parallel file system).

Both pre- and post-processing can be started with either root or user
privileges, controlled by a keyword. The configuration file is parsed by the
user interface and can therefore be changed at run time. New workers can be
plugged in without the need to change the CCS source code.

The pvm-worker used on our SCI cluster may serve as an example to il-
lustrate what can be done with a worker: The pvm-worker creates a PVM
host file (the host names were provided by the CM) and starts the master-
pvmd. The master-pvmd starts, according to the given host file, all other
slave-pvmds via the normal rsh or ssh mechanism to establish the virtual
machine (VM) on the requested partition. Since the user application cannot
be started until all pvmds are running, the pvm-worker starts a special PVM
application after the master-pvmd is running. This little program then peri-
odically checks how many nodes are connected to the VM until the entire VM
is up. Thereafter the user application is started. After termination, the worker
terminates the master-pvmd which shuts the VM down. The corresponding
worker definition is shown in Fig 26.5.

26.2.3 Scheduling

In their resource requests, users must specify the expected finishing time of
their jobs. Based on this information, CCS determines a fair and determi-
nistic schedule. Both, batch and interactive requests are processed in the
same scheduler queue. The request scheduling problem is modeled as an n-
dimensional bin packing problem, where one dimension corresponds to the
continuous time flow, and the other n − 1 dimensions represent system cha-
racteristics, such as the number of processor elements. In general, CCS uses
an enhanced first-come-first-serve (FCFS) scheduler, which fits best to the
request profile in our center. Waiting times are minimized by first checking
whether a new request fits into a gap of the current schedule (back-filling).

26. Multi-User System Management 449

Fig. 26.6. Scheduler GUI displaying the scheduled nodes over time

Figure 26.6 depicts a typical view of the scheduler GUI. The schedule
is displayed in an X-window that has been implemented with the portable
Tcl/Tk package.

CCS provides several scheduling strategies (e.g., first-come-first-serve,
shortest-job-first, longest-job-first), which can be chosen by the system ad-
ministrator. The integration of new schedulers is easy, because the Queue
Manager (QM) provides an API to plug in new modules. This also allows the
QM to use several schedulers. At runtime, the QM makes a decision which
scheduler to use, thereby being able to adjust to specific operating modes
(e.g., interactive or batch).

With CCS, it is also possible to reserve resources for a given time in the
future. This is a convenient feature when planning interactive sessions or
online-events. As an example, consider a user who wants to run an appli-
cation on 32 nodes of the SCI cluster from 9 to 11 am at 13.02.1999. The
resource allocation is done with the command: ccsalloc -m SCI -n 32 -s
9:13.02.99 -t 2h.

Deadline scheduling is another useful feature. Here, CCS guarantees the
job to be completed no later than the specified time. A typical scenario for this
feature is an overnight run that must be finished when the user comes back
into the office next morning. Deadline scheduling gives CCS the flexibility to
improve the system utilization by scheduling batch jobs at the latest possible
time so that the deadline can still be met.

450 M. Brune, A. Keller, A. Reinefeld

� � �
 � � � � � �

���
�
�
����

Fig. 26.7. Different link speeds of the 32-node SCI cluster at PC2

The CCS scheduler is able to handle fixed and time-variable resources.
A resource that has been reserved for a given time interval is fixed in time:
it cannot be shifted on the time axis. Interactive requests, in contrast, can
be scheduled earlier but not later than asked for. Such a shift on the time
axis might occur when another user releases resources before the estimated
finishing time.

26.2.4 Partitioning the System

On the one hand, we want to maximize the system utilization, whereas on
the other hand, we wish to maintain a high degree of system independence
for improved portability and easier adaptation to heterogeneous systems.

To deal with these two contradictory goals, we have split the schedu-
ling process into two instances. The Queue Manager (QM) and the Machine
Manager (MM). The QM is independent of the underlying hardware architec-
ture [9]. It has no information on mapping constraints such as the minimum
cluster size or the amount/location of entry nodes.

These machine dependent tasks are performed by the MM. It verifies
whether a schedule given by the QM can be mapped onto the hardware at
the specified time. If the schedule cannot be mapped onto the machine, the
MM returns an alternative schedule to the QM.

This separation between the hardware-independent QM and the system-
specific MM allows to encapsulate system-specific mapping heuristics in small
code modules. With this approach, special requests for I/O-nodes, partition
shapes, or memory constraints can be taken into consideration in the verifying
process.

As an example, the Mapping Verifier (MV) in the MM takes system cha-
racteristics like the different speed of horizontal and vertical SCI links (see

26. Multi-User System Management 451

Fig. 26.7) into account. With its more detailed information on the machine
structure the MV employs system specific partitioning schemes. For our SCI
cluster, it computes a partition according to the cost functions “minimum
network interference by other applications” and “best network bandwidth
for the given application”.

The first function prefers to use as few SCI rings as possible, thereby
minimizing the number of changes from the X- to the Y-ringlets in the 2D
torus (Fig. 26.7), while the second function tries to map applications on single
rings with maximum bandwidth.

The API of the MM allows to adapt the partioning to arbitrary topologies,
or to implement mapping modules, that are optimally tailored to the specific
hardware properties.

26.2.5 Job Creation and Control

At configuration time, the QM sends the user request to the MM. The MM
then allocates the compute nodes, loads and starts the application code and
releases the resources after the run. Because the MM also has to verify the
schedule, which is a polynomial time problem, a single MM daemon might
become a computational bottleneck. We have therefore split the MM into
two parts (Fig. 26.8), one for the machine administration and one for the job
execution. Each part contains several modules and/or daemons, which can
run on different hosts to improve the performance.

The machine administration part consists of three separate daemons (MV,
SM, CM) that execute asynchronously. A small Dispatcher coordinates the
lower-level components.

The Mapping Verifier (MV) checks whether the schedule given by the QM
can be realized at the specified time with the specified resources (see 26.2.4).

The Configuration Manager (CM) provides the interface to the hardware.
It is responsible for booting, partitioning, and shutting down the operating
system software. Depending on the system’s capabilities, the CM may ga-
ther consecutive requests and re-organize or combine them for improving
the throughput—analogously to a hard disk controller. Additionally, the CM
provides external tools with information on the allocated partition, like host
names or the partition size. With this information, external tools can create
host files—to start a PVM application, for example.

One typical example for an external tool is the CCS MON monitoring
software. It collects CPU utilization, memory usage and other useful infor-
mation on the status of the SCI nodes. Users may start a graphical frontend
to watch the current status of their nodes. The CM provides the CCS MON
server with information on the node status via a UDP link. This information
is then used by the CCS MON user interface to highlight the corresponding
frame(s) on the display (Chapter 25).

Ideally, a resource management system should provide all system features
to the user, including permission to log into the owned nodes. But as a con-

452 M. Brune, A. Keller, A. Reinefeld

� � �

� � � � � �

� � � � � �

� � 	 � � � � � � � � 	

� � 	 � �

� � � � � � �
 � � � � 	

� � 	 � �

� � �

� � 	 � �

� � �
 � �
 � � � � 	

� �
� �
 � � � � � 	 �
� � 	 � �

� � � � � � � �

� �
� � � � � � 	 �
� � �
 � � �

� � � � � � � 	 �
 � � � � � � � � � � �

� � � 	 � � � � � � � � �

� � 	 � �

� � �
 � �
 � � � � 	

� �
� �
 � � � � � 	 �
� � 	 � �

� �
� �
 � � � � � 	 �
� � 	 � �

� � � � � � 	
 � � �

Fig. 26.8. Detailed view of the machine manager (MM)

sequence, users are then able to start arbitrary processes on arbitrary nodes
and the system cleanup may become difficult. In CCS, this is the task of the
Node Session Manager (NSM) which runs on each specified entry node with
root privileges. The NSM starts and stops jobs and it controls the proces-
ses. At allocation time, the NSM starts an Execution Manager (EM) which
establishes the user environment (UID, shell settings, environment variables,
etc.) and starts the application. In space-sharing mode, the NSM changes
the passwd file to avoid concurrent logins from other users. In time-sharing
mode, the NSM invokes as many EMs as needed. It also gathers dynamic
load data and sends it to the MM and QM where it is used for scheduling
and mapping purposes.

The Session Manager (SM) synchronizes the NSMs. It sets up the ses-
sion, including application-specific pre- or postprocessing, and it maintains
information on the status of the applications. Figure 26.9 gives an overview
of the control and data flow in a CCS island.

26.2.6 Reliability

With the transition from batch-oriented high-performance computing to in-
teractive access, system reliability becomes an even more important issue
because node breakdowns immediately influence the user’s work flow. Addi-
tionally, today’s parallel systems often comprise independent (workstation-

26. Multi-User System Management 453

� � � �
� � � � �

� � � � �

� � �

� �

� �

� � �

� �

� � � �

� � � �

� � �

� � - .

� � - .

4 � � �
 ' , .
 � 5 � �

4 � � �
 ' , .
 � 5 � �

� � �

�����
�����

4 � � �
 ' , .
 � 5 � �

�

� � �

�

$
$
�

��

-
-
�
,
��'

���
,

�
��
��
��

� � �
 � � 	
� � � � �

� � � � � � ! � �

����&���

Fig. 26.9. Control and data flow in CCS

like) nodes, which are more vulnerable to breakdowns than the homogeneous
nodes contained in a regularly structured parallel system.

A resource management system must be able to detect and possibly re-
pair breakdowns at three different levels: the computing nodes, the software
daemons, and the communication network.

Many failures become only apparent when the communication behavior
changes over time, or when a communication partner does not answer at
all. To detect a failure and to determine its reason (i.e. to decide whether
the network is down or congested, whether the communication partner has
died, or whether a node has crashed), the Island Manager (IM) maintains an
information base on the status of all system components within the island.
Each CCS daemon notifies the IM when starting up or closing down, so that
the IM has a consistent view on the current system status.

When a CCS daemon detects a breakdown of another daemon, it closes
the connection to this daemon and requests the IM to re-establish the link.
The IM has a number of methods to find out about the problem. Which of
them to use depends on the type of the target system. If it is an SCI cluster,
the IM first tries to ping the daemon in question. If it does not answer in
time, the IM then logs into the faulty node and tries to determine whether
the daemon is still running or in which state it is. The IM is authorized to

454 M. Brune, A. Keller, A. Reinefeld

stop erroneous daemons, to restart crashed ones, and to migrate daemons
to other hosts in case of system overloads or crashes. For this purpose, the
IM maintains an address translation table that matches symbolic names to
physical network addresses (e.g. host ID and port number). Symbolic names
are given by the triple <site, island, process> (e.g. PC2 PSC MM).
With this feature a cluster can be logically divided into several CCS islands,
each of them with different scheduling or mapping characteristics.

If the IM cannot solve the problem, it sends an email with a problem
report and the actions taken to the administrator.

For recovery purposes, each CCS daemon periodically saves its state to a
disk. At boot time the daemons read their information and synchronize with
their communication partners. This allows to shutdown or kill CCS daemons
(or even the whole island) at any given time without the risk to loose requests.

26.3 Resource and Service Description

One important tool in CCS is the Resource and Service Description RSD [7].
It is used at the administrator level for describing type and topology of the
available resources, and at the user level for specifying the required system
configuration for a given application.

Compared to the text-based resource description language RDL [3] we
have used in the early 90s, the new RSD scheme is more versatile. It has
three interfaces:

– a GUI for specifying simple topologies and attributes,
– a language interface for specifying more complex and repetitive graphs

(mainly intended for system administrators), and
– an API for access from within an application program.

The graphical editor stores the graphical and textual data in an internal
data representation. This data is bundled with the API access methods and
sent as an attributed object to the target systems, where it is matched against
other hardware or software descriptions.

RSD data can only be accessed via the API. For later modifications it is re-
translated into its original form of graphic primitives and textual components.
This is possible, because the internal data representation also contains a
description of the component’s graphical layout. In the following, we describe
the core components of RSD in more detail.

26.3.1 Graphical Representation

The graphical editor provides a set of simple modules that can be edited and
linked together to build a hierarchical graph of the resource components.

26. Multi-User System Management 455

Fig. 26.10. RSD editor

System administrators use the GUI to describe the basic computing and
networking components in a geographically distributed environment. Fi-
gure 26.10 illustrates a typical administrator session. The system components
of the site are specified in a top-down manner with the interconnection topo-
logy as a starting point. With drag-and-drop, the administrator specifies the
available machines, their links and the interconnection to the outside world.
New resources can be specified by using predefined objects and attributes via
pull down menus, radio buttons, and check boxes.

In the next step, the structure of the systems is successively refined. The
GUI offers a set of standard machine layouts like Cray T3E or IBM SP2 and
some generic topologies like ring, grid, or torus. The administrator defines
the size and the general attributes of the system. When the system has been
specified, a window with a graphical representation of the system opens, in
which single nodes can be selected. Attributes like network interface cards,
main memory, disk capacity, I/O throughput, CPU load, network traffic, disk
space, or the automatic start of daemons, etc. can be assigned.

Users use the GUI for specifying their resource requests. There exist a
number of predefined configuration files containing some commonly used re-
source descriptions. It is also possible to connect to a remote site for loading
its RSD language dialect.

As an example, in one site the entity processor may be denoted by the
attribute name “CPU”, while another site may use the term “PE”. Downloa-
ding a remote RSD dialect allows the user interface to perform online syntax
checks when specifying remote resources. Likewise, it is possible to join mul-

456 M. Brune, A. Keller, A. Reinefeld

tiple sites to a meta-site, using a different RSD dialect Note, that this does
not affect the language used in the local sites.

26.3.2 Textual Representation

For some system administrator tasks, GUIs are not powerful enough for de-
scribing complex (meta-)computing environments with a large number of
services and resources. Hence, we devised a language interface that is used
to specify irregularly interconnected, attributed structures. Its hierarchical
concept allows different dependency graphs to be grouped for building even
more complex nodes, i.e., hypernodes.

Active nodes are indicated by the keyword NODE. Depending on whether
RSD is used to describe hardware or software topologies, the keyword NODE
is interpreted as a processor or a process.

Communication interfaces are declared with the keyword PORT. A PORT
may be a socket, a passive hardware entity like a network interface card, a
crossbar, or a process that behaves passively within the parallel program.

A NODE definition consists of three parts:

1. In the optional DEFINITION section, identifiers and attributes are intro-
duced by Identifier [= (value,. . .)] .

2. The DECLARATION section declares all nodes with corresponding attri-
butes. The notion of a ‘node’ is recursive. They are described by NODE
NodeName {PORT PortName; attribute 1, ...}.

3. The CONNECTION section is again optional. It is used to define attributed
edges between the ports of the nodes declared above: EDGE NameOfEdge
{NODE w PORT x <=> NODE y PORT z; attribute 1; ...}.
So called virtual edges are used to specify links between different levels of
the hierarchy in the graph. This allows to establish a link from the descri-
bed module to the outside world by exporting a physical port to the next
higher level. These edges are defined by: ASSIGN NameOfVirtualEdge {
NODE w PORT x <=> PORT a}. Note, that NODE w and PORT a are the
only entities known to the outside world.

Fig. 26.11 shows the configuration of the 4 by 8 node SCI cluster ope-
rated in Paderborn. The corresponding resource specification is shown in
Fig. 26.12. The cluster consists of two frontend systems and 32 compute
nodes. The frontends are quad-processor systems with ATM connections for
external communication and Fast Ethernet links for controlling the cluster
and serving I/O of the applications running on the compute nodes. For each
compute node, the following attributes are specified: CPU type, the amount
of memory, and the ports of the SCI and Fast Ethernet network. All nodes
are interconnected by uni-directional SCI ringlets in a 2D torus topology. The

26. Multi-User System Management 457

(2(2(2(2

(2(2(2(2

6 ' �
) � � � � , � �

7 � �

7 � �

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2

(2(2
� $ %

� � � � � � � �

� �

� �

� �

� �

� �

� �

� 1 � 1 � 1 � 1

Fig. 26.11. Configuration of the 4 x 8 node SCI cluster in Paderborn

bandwidth of the horizontal rings is 400 Mbyte/s and 500 Mbyte/s in vertical
direction. Each node is connected by Fast Ethernet to one of the frontends
(gateways).

26.3.3 Internal Data Representation

The abstract data type establishes the link between the graphical and the
textual representation of RSD. It is used for storing descriptions on disk and
for exchanging them across networks. The internal data representation must
be capable of describing the following properties:

– arbitrary graph structures,
– hierarchical systems or organizations,
– nodes and edges with valued attributes.

Furthermore, it should be possible to reconstruct the original representation,
either graphical or text based. This facilitates the maintenance of large de-
scriptions (e.g. a site with complex heterogeneous computing equipment) and
allows visualization at remote sites.

In order to use RSD in a distributed environment, a common format for
exchanging RSD data structures is needed. The traditional approach would
be to use a data stream format. However, this would involve two additional
transformation steps whenever RSD data is to be exchanged (internal repre-
sentation into data stream and back). Since the RSD internal representation
has been defined in an object oriented way, this overhead can be avoided,
when the complete object is sent across the network.

458 M. Brune, A. Keller, A. Reinefeld

NODE PSC //This SCI cluster is named PSC
{

// DEFINITIONS:
CONST X = 4, Y = 8; // dimensions of the system
CONST N = 2; // number of frontends
CONST EXCLUSIVE = TRUE; // resources for exclusive use only

// DECLARATIONS:
// we have 2 SMP nodes (frontends), each with 4 processors
// each gateway provides an ATM port and a FastEthernet port
FOR i=0 TO N-1 DO

NODE frontend $i {
PORT ATM; PORT ETHERNET; CPU=PentiumII; MEMORY=512 MByte; MULTI PROC=4;};

OD
// the others are dual processor nodes
// each with a SCI port and a Fast Ethernet port
FOR i=0 TO X-1 DO

FOR j=0 TO Y-1 DO
NODE ij {
PORT SCI; PORT ETHERNET; CPU=PentiumII; MEMORY=256 MByte; MULTI PROC=2;};

OD
OD
// CONNECTIONS: build the SCI 2D torus, vertical direction
FOR i=0 TO X-1 DO

FOR j=0 TO Y-1 DO
EDGE edge ij to i((j+1) MOD Y) {

NODE ij PORT SCI => NODE i((j+1) MOD Y) PORT SCI;
BANDWIDTH = 500 MByte/s; };

OD
OD
// CONNECTIONS: build the SCI 2D torus, horizontal direction
FOR i=0 TO X-1 DO

FOR j=0 TO Y-1 DO
EDGE edge ij to $((i+1) MOD X)$j {

NODE ij PORT SCI => NODE $((i+1) MOD X)$j PORT SCI;
BANDWIDTH = 400 MByte/s;};

OD
OD
// CONNECTIONS: build the FastEthernet link to all nodes
FOR i=0 TO X-1 DO

FOR j=0 TO Y-1 DO
EDGE edge frontend $(i MOD 2) to ij) {

NODE frontend $(i MOD 2) PORT ETHERNET <=> NODE ij PORT ETHERNET;
BANDWIDTH = 100 Mbps; };

};

Fig. 26.12. RSD specification of the SCI cluster in Fig. 26.11

Today there exists a variety of standards for transmitting objects over the
Internet, e.g. CORBA, Java, or Component Object Model COM+. Since we do
not want to commit on either of these, we only define the interfaces of the RSD
object class but not its private implementation. This allows others to choose
an implementation that fits best to their own data structures. Interoperability
between different implementations can be improved by defining translating
constructors, i.e. constructors that take an RSD object as an argument and
create a copy of it using another internal representation.

26. Multi-User System Management 459

26.4 Related Work

Much work has been done in the field of resource management in order to
optimally utilize the costly high-performance computer systems. However,
in contrast to the CCS approach, described here, most of today’s resource
management systems are either vendor-specific or devoted to the management
of LAN- or WAN-connected workstation clusters.

The Network Queuing System NQS [14], developed by NASA Ames for the
Cray2 and Cray Y-MP, might be regarded as the ancestor of many modern
queuing systems like the Portable Batch System PBS [4] or the Cray Network
Queuing Environment NQE [17].

Following another path in the line of ancestors, the IBM Load Leveler
is a direct descendant of Condor [15], whereas Codine [10] has its roots in
Condor and DQS. They have been developed to support ’high-throughput
computing’ on UNIX workstation clusters. In contrast to high-performance
computing, the goal is here to run a large number of (mostly sequential) batch
jobs on workstation clusters without affecting interactive use. The Load Sha-
ring Facility LSF [16] is another popular software to utilize LAN-connected
workstations for high-throughput computing. For more detailed information
on cluster managing software, the reader is referred to [2, 12].

These systems have been extended for supporting the coordinated execu-
tion of parallel applications, mostly based on PVM. A multitude of schemes
have been devised for high-throughput computing on a somewhat larger scale,
including the Iowa State University’s Batrun [19], the Dutch Polder initiative
[8], the Nimrod project [1], and the object-oriented Legion [11] which proved
useful in a nation-wide cluster. While these schemes emphasize mostly the
application support on homogeneous systems, the AppLeS project [5] provi-
des application-level scheduling agents on heterogeneous systems, taking into
account their actual resource performance.

26.5 Summary

The Computing Center Software (CCS) is a resource management software
for the user access and system administration of dedicated high-performance
systems. It has been in operation since 1992 on various massively parallel
systems and workstation clusters.

In principle, an SCI cluster can be managed just like an ordinary worksta-
tion cluster with, e.g. Ethernet network. But due to the much higher speed
and throughput of the SCI links, we regard SCI clusters as dedicated, parti-
tionable high-performance computers that are operated in multi-user mode.
Especially the very large SCI clusters (with up to 192 PEs) operated at our
site have more in common with traditional MPPs than with LAN connec-
ted workstations. Hence, we have adapted CCS for the management of SCI
clusters. CCS provides:

460 M. Brune, A. Keller, A. Reinefeld

– optimal space partitioning for concurrent access by multiple users,
– scheduling strategies known from high-performance computers,
– versatile tools (GUI, API) for specifying resources and services,
– reliability functions to support remote user access.

The modular concept of CCS proved very useful in our adaptation. We
just needed to specify the topologies of our SCI clusters with the resource
and service description tool RSD [7], and we had to implement new mapping
modules for the optimal partitioning of the shared SCI links.

Acknowledgments

Thanks to the members of the CCS team, who have spent a tremendous effort
on the development, implementation, and debugging since the project start
in 1992: Bernard Bauer, Matthias Brune, Christoph Drube, Harald Dunkel,
Jörn Gehring, Oliver Geisser, Christian Hellmann, Axel Keller, Achim Kober-
stein, Rainer Kottenhoff, Karim Kremers, Torsten Kuhnhenne, Fru Ndenge,
Friedhelm Ramme, Thomas Römke, Helmut Salmen, Dirk Schirmer, Volker
Schnecke, Jörg Varnholt, Leonard Voos, Anke Weber.

Also, special thanks to our collaborators at CNUCE, Pisa: Domenico La-
forenza, Ranieri Baraglia, Mauro Michelotti, Simone Nannetti. The CCS pro-
ject did not only benefit by the many fruitful discussions with the CNUCE
team, but our Italian friends have also done a magnificent job in implemen-
ting the graphical user interface!

References

1. D. Abramson, R. Sosic, J. Giddy, and B. Hall: Nimrod: A Tool for Performing
Parameterized Simulations using Distributed Workstations. 4th IEEE Symp.
High Performance and Distributed Computing, August 1995.

2. M. Baker, G. Fox, and H. Yau: Cluster Computing Review. Northeast Parallel
Architectures Center, Syracuse University New York, November 1995.
http://www.npar.syr.edu/techreports/index.html.

3. B. Bauer and F. Ramme: A General Purpose Resource Description Language.
In: Grebe, Baumann (eds): Parallele Datenverarbeitung mit dem Transputer,
Springer-Verlag Berlin, 1991, pp. 68–75.

4. A. Bayucan, R. Henderson, T. Proett, D. Tweten, and B. Kelly: Portable Batch
System: External Reference Specification. Release 1.1.7, NASA Ames Research
Center, June 1996.

5. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao: Application-Level
Scheduling on Distributed Heterogeneous Networks. Supercomputing, November
1996.

6. N. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic,
and W.K. Su: Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro
vol. 15, no 1, Feb. 1995, pp. 29-36.

26. Multi-User System Management 461

7. M. Brune, J. Gehring, A. Keller, and A. Reinefeld: RSD – Resource and Service
Description. Intl. Symp. on High Performance Computing Systems and Appli-
cations HPCS’98, Edmonton Canada, Kluwer Academic Press, May 1998.

8. D. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne: A Worldwide
Flock of Condors: Load Sharing among Workstation Clusters. FGCS, Vol. 12,
1996, pp. 53–66.

9. J. Gehring and F. Ramme: Architecture-Independent Request-Scheduling with
Tight Waiting-Time Estimations. IPPS’96 Workshop on Scheduling Strategies
for Parallel Processing, Hawaii, Springer LNCS 1162, 1996, pp. 41–54.

10. GENIAS Software GmbH: Codine: Computing in Distributed Networked En-
vironments. http://www.genias.de/products/codine, January 1999.

11. A. Grimshaw, J. Weissman, E. West, and E. Loyot: Metasystems: An Approach
Combining Parallel Processing and Heterogeneous Distributed Computing Sy-
stems. J. Parallel Distributed Computing, Vol. 21, 1994, pp. 257–270.

12. J. Jones and C. Brickell: Second Evaluation of Job Queueing/Scheduling Soft-
ware: Phase 1 Report. Nasa Ames Research Center, NAS Tech. Rep. NAS-97-
013, June 1997.

13. A. Keller and A. Reinefeld: CCS Resource Management in Networked HPC
Systems. 7th Heterogeneous Computing Workshop HCW’98 at IPPS, Orlando
Florida, IEEE Comp. Society Press, 1998, pp. 44–56.

14. B.A. Kinsbury: The Network Queuing System. Cosmic Software, NASA Ames
Research Center, 1986.

15. M.J. Litzkow and M. Livny: Condor – A Hunter of Idle Workstations. Procs.
8th IEEE Int. Conference on Distributed Computing Systems, June 1988, pp.
104–111.

16. LSF: Product Overview. http://www.platform.com/content/products/, Ja-
nuary 1999.

17. NQE-Administration. Cray-Soft USA, SG-2150 2.0, May 1995.
18. F. Ramme, T. Römke, and K. Kremer: A Distributed Computing Center Soft-

ware for the Efficient Use of Parallel Computer Systems. HPCN Europe, Sprin-
ger LNCS 797, Vol. 2, 1994, pp. 129–136.

19. F. Tandiary, S.C. Kothari, A. Dixit, and E.W. Anderson: Batrun: Utilizing
Idle Workstations for Large-Scale Computing. IEEE Parallel and Distributed
Techn., 1996, pp. 41–48.

Part IX

Perspectives

SCI has been—and surely continues to be—an intriguing success story be-
cause it has contributed to a new and promising field, the field of high-
performance computing with commodity products. The final chapter shows
the extent to which the development and industrial takeup of the SCI techno-
logy depends on individuals, technological trends, companies’ interests, and
sometimes even luck.

Who could be a better author for this kind of topic than David B. Gu-
stavson, sometimes nicknamed “the father of SCI”? With much energy and
enthusiasm, David was the chair of the IEEE Computer Society Micropro-
cessor Standards Subcommittee on SCI, IEEE Std 1596-1992, and he is now
executive director of the SCIzzL Association which brings together users,
developers, and manufacturers of SCI technology.

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, p. 463, 1999
© Springer-Verlag Berlin Heidelberg 1999

27. Industrial Takeup of SCI and Future
Developments

David B. Gustavson

SCIzzL/Santa Clara University
1946 Fallen Leaf Lane
Los Altos, CA 94024-7206
Email: dbg@SCIzzL.com

27.1 SCI’s Cultural Context

The Scalable Coherent Interface began life in 1987, in the IEEE 896 Futurebus
project. Futurebus was aiming at the high-performance bus/module market,
above VME, hoping to be a multiprocessing backplane bus/module system.

Multiprocessing support in Futurebus evolved to include fair and priori-
tized arbitration; a set of primitives to handle process synchronization, locks
and mutual exclusion; reflective memory, then cache coherence; and a variety
of maintenance features as required for large systems.

Paul Sweazey, then of National Semiconductor, had led the Futurebus Ca-
che Coherence task group, which developed the now-standard MOESI (Mo-
dified Owned Exclusive Shared Invalid) categorization of coherence schemes.
After having finished that task, he took time to think about where things
were going.

Sweazey extrapolated microprocessor chip performance versus time, and
showed that within just a few years Futurebus would be unable to support
multiprocessing meaningfully, because one processor would be able to satu-
rate the bandwidth of the fastest backplane bus possible. Moreover, ever-
increasing levels of integration had moved computer systems from rooms to
racks to crates to boards, and soon to chips.

Thus the whole concept of a high-end modular bus had a finite remaining
lifetime. Buses would be useful for I/O adapters, for customizing a system,
but would be inadequate for memory expansion or multiprocessing demands.

Sweazey then chaired a Study Group under the IEEE Computer Society’s
Microprocessor Standards Committee, which was then chaired by Bob Davis,
to consider what to do about this problem. After just a few meetings, the
outlines of a potential solution began to appear, and a formal IEEE Project
was begun, chaired by me.

At this point, all our emphasis was on the very high end of possible
performance, and cost was a secondary consideration. Furthermore, we had
to define our territory to avoid damaging the market for Futurebus. The
agreement we worked out with Futurebus chairman Paul Borrill was that
SCI’s goal would be 1 GByte/s per processor, far above anything that even

H. Hellwagner, A. Reinefeld (Eds.): SCI’99, LNCS 1734, pp. 465-480, 1999
© Springer-Verlag Berlin Heidelberg 1999

466 D. B. Gustavson

the most optimistic Futurebus enthusiast thought any backplane bus could
ever do. (Some buses have now exceeded 1 GByte/s in total, but only by
reducing loads and distances to far less than a backplane module/bus system
requires.)

At about that time, Futurebus 1987 was complete but lacking much com-
mercial support. The US Navy decided that Futurebus was just what it nee-
ded, if only a few minor changes would be incorporated. Therefore, the Futu-
rebus+ group was formed and began to revise the 1987 specification, to add
more priority levels and more performance and packaging options. The effect
of this effort was to kill adoption of Futurebus 1987 because its replacement
was imminent. However, working out these modifications took several years,
so that Futurebus+ did not get approved until 1991.

IEEE 1394 SerialBus (now sometimes commercially called FireWireTM

or iLinkTM) was being developed at the same time, by some of the same
people, and was incorporated into Futurebus+ and SCI and several other
bus standards as an alternate path for diagnostics and I/O. There was a
deliberate decision to optimize SerialBus strictly for low cost for desktop
I/O, without regard for scalability or the cost, complexity, or performance of
future switches/bridges. SerialBus did adopt the same address space model
as SCI, and a similar command set, though.

SerialBus, Futurebus, and SCI also share a co-developed Control and Sta-
tus Register architecture, IEEE Std 1212, chaired by SCI architect David
James. This was a painful laborious process, because though his interests lay
mainly toward the scalable SCI, it was important to keep the other groups
committed to this joint architecture. That meant in effect that every com-
plaint from the other groups was equivalent to a veto of the project, so every
issue had to be worked through carefully, both with regard to their desires
and also with regard to problems those desires might introduce when sca-
led up. Eventually agreement or respectful compromises were reached on all
points and the standard was completed.

The marketing model in the early days of SCI development showed VME
gaining market volume until Futurebus+ products arrived, then gradually
declining as Futurebus+ volumes grew, and after about 10 years SCI would
appear and begin to take volume from Futurebus+. That was attractive for
everyone, because it followed the expected natural progression, allowed for
planning, and reassured the customer that there was no dead end in sight.

Unfortunately, that is not how things turned out. The delay in produ-
cing Futurebus+ resulted in a large increase in microprocessor power, which
nearly closed its multiprocessor-application window, and VME continued to
develop extensions that increased its performance so VME could handle the
remaining application space adequately. Thus there was no compelling appli-
cation to justify the costs of adopting a completely new technology like Fu-
turebus+. A few companies shipped Futurebus+ products, including DEC,
but the economics did not work anymore. (For example, to keep bus stubs

27. Industrial Takeup and Future Developments 467

as short as possible, Futurebus+ had to use a very wide bus with transcei-
vers as close to the connector as possible, resulting in many packages and
many pins—17 packages in one commercial version. The protocol variants
also made the controller chip rather complex, the asynchronous protocol was
hard to test under worst-case conditions, and the need for short stubs made
it impossible to use a passive extender card to make boards accessible while
trouble-shooting. Thus trouble-shooting tended to change the signal timings,
which often changed the conditions that were to be studied.)

On the other front, SCI arrived far too early. Futurebus+ was difficult
partly because there was complete freedom how to do everything, so it was
hard to agree which of several methods should be used. (In some cases there
was no agreement, and more than one method was adopted by the standard,
deferring the decisions needed for product compatibility to other documents,
which were called “profiles.”) Futurebus meetings were very large, with many
participants from every part of industry, so technical work was difficult, pro-
cedures became more formal, and decisions were by vote. Backtracking in the
design space after problems were discovered was too difficult.

SCI also had complete freedom, but its technical problems were very diffi-
cult and there was seldom more than one good solution to choose from. Also,
SCI had no credibility, due to its preposterous goals, so most people atten-
ded only because of personal interest rather than corporate agenda, and the
meetings were small. As a result, it was possible to work in a different way
that would avoid the dynamics that plagued Futurebus (and its predecessor
IEEE 960 Fastbus). We had enough people, often the leading experts in the
field, but not too many. We had leading researchers from academia, and chief
architects from computer manufacturers. We asked for advice from compa-
nies active in the multiprocessor field, such as BB&N and Sequent, and they
were extremely helpful. Norsk Data, later Dolphin Server Technology, planned
from the beginning to build computers using SCI as the processor/memory
interconnect, so they worked intensively with us and had a major influence
in keeping the SCI design sound and practical.

Furthermore, we were fortunate to have the right personality mix, so that
we could operate in a no-holds-barred ego-free nonpolitical environment. And,
we had several key participants available fulltime, especially our technical
editor and chief architect David James, of HP and later Apple Computer.

The Internet also helped us work faster. HP provided an FTP server that
could be accessed by all participants, and a reliable platform-independent
document formatting program, FrameMaker, became available. This made
it possible for people in the US to perform a round of edits, then pass the
document over to people in Europe for further work, and vice versa on a
daily basis when appropriate. The nine hour time difference made it possible
to essentially double the editing hours available without having to deal with
multiple-copies/multiple-authors problems. Later the HP server was replaced

468 D. B. Gustavson

by one at Santa Clara University and then by one at SCIzzL, and FrameMaker
was supplemented by another versatile technology, Adobe Acrobat.

There was only one vote in the SCI working group. That was the vote
at the very end, to declare the project complete. Up to that point, every
decision was made by consensus. If the right answer was clear, we took it.
If not, we took a “good enough” answer until we ran into trouble, then we
would backtrack if needed.

As a result, technical progress was extremely fast, with a document that
was essentially complete in 1990 but was polished and refined until 1992. This
schedule was unexpected—none of us would have predicted that SCI would
take far less time than Futurebus. We started the project fully expecting to
spend 10 years or more.

This schedule anti-slip threatened the marketing model of Futurebus,
which caused a great deal of distress and even personal hostility.

But the threat was even worse than it first appeared, because SCI had to
be very simple in order to run at such high speeds, because SCI had no need
for separate transceiver chips or terminators or constrained physical layouts
(e.g. short bus stubs), because SCI fit easily within one corner of an ASIC and
needed only 72 pins for 2 GByte/s, and because SCI’s bandwidth scaled up
with system size, and worked with fiber optic links as well as copper cables.

So the cooperative “VME then Futurebus then SCI” marketing model
vaporized, and SCI became opposed by a large number of influential people
whose goals were threatened.

Another marketing problem was the lack of ego commitment to SCI.
Usually, for an interconnect standard there will be attendees from a large
number of companies. The attendees will see numerous problems that are not
being addressed to their satisfaction, and will join in the work, make some
contributions, and thereby become committed to its success. They lobby their
company management for support and commitment, and build up a substan-
tial visibility in the marketplace. This can be essential for getting the critical
mass of support needed for the success of a standard. (Of course, it is also
responsible for many of the baroque features found in most standards, and
adds a great deal of complexity to a system.)

We had a steady stream of visitors attending the monthly multi-day mee-
tings, but few developed that sort of attachment. Our work was often very
esoteric, such as working through the requirements of forward-progress gua-
rantees (no deadlocks or livelocks/stalls) and their implications for the cache
coherence mechanism. Furthermore, we had bypassed many of the more trac-
table problems by adopting other current work. For example, we adopted as
a whole the new metric crate and backplane system (IEEE Std 1301) that
had been developed primarily for Futurebus (with only one P1301 participant
representing SCI interests).

As a result, we had only a few committed companies when we finished the
work, not a broad base of industry acceptance. Our main competition at that

27. Industrial Takeup and Future Developments 469

time seemed to be Futurebus, with many committed supporting companies
and significant visibility in the market and the trade press; and FibreChan-
nel, with perhaps even greater commitment and certainly very professional
coordinated marketing.

SCI’s image as a backplane bus/module system also broke down for ano-
ther reason. If manufacturers have a choice between using their favorite pack-
aging for their module designs (connecting the modules by cable), and rede-
signing their modules to fit some standard’s requirements, most prefer to use
their own packaging. It was the severe constraints of backplane buses that
caused standard modules to be widely used. Once SCI removed those con-
straints, allowing arbitrary packaging connected by cables, virtually all desi-
gns chose something other than SCI’s recommended mechanical crate/module
standard. Thus SCI devices have no common appearance that can be used for
marketing photos, and SCI received very little promotion from the module
and crate manufacturers, a significant reduction of visibility in the market-
place compared to a normal bus standard.

But probably the biggest obstacle to marketing SCI was the lack of a
simple way to explain what it is, what it can do, how it relates to well-
known and understood products. SCI began as a high-end backplane bus for
processors and memory and I/O, but became much more general, supporting
cables and switches and acting somewhat like an incredibly fast local area
network, and simpler/cheaper. It required much more explanation than a
typical new product that merely lowers prices or runs a little faster.

Too late, some better names were invented, like Local Area Multiprocessor
and Local Area Memory Port, but by then “SCI” had gained its own name
recognition. More recently, the descriptive term “concurrent bus” has begun
to look interesting—more on that later.

27.2 SCI Marketing and Adoption

SCI and FibreChannel began marketing at almost the same time, but Fi-
breChannel was enormously well funded and well coordinated, supported by
large companies with significant resources, which saw FibreChannel as useful
for solving real problems and also as a potential source of sales.

SCI lacked that kind of support. Only one company, Dolphin (no longer in
the processor business), promoted SCI as an open interchange standard. The
Navy did adopt SCI as the unifying interconnect for its Joint Advanced Strike
Technology (JAST) future fighter program, and had an interest in SCI’s com-
mercial success because of the need for military designs to take advantage of
cost savings by using Commercial Off-The-Shelf (COTS) products wherever
possible, and this did add somewhat to SCI’s visibility. Unfortunately, it also
created enemies, because JAST was seen as an important design win for Fi-
breChannel as well. There were a number of design competitions and “shoo-
touts” as a result, and last I saw FibreChannel had gained approximately

470 D. B. Gustavson

equal authorization. The program has now gone under wraps, so the current
status of SCI in JAST is not obvious, but indirect evidence indicates that SCI
is still included. (For example, one startup company, iCore Technology, has
received some SBIR (Small Business Incentive) funding from military sour-
ces, to bring a high performance PCI/SCI interface to a manufacturing-ready
state.)

FibreChannel shared one marketing problem with SCI, that of being
hard to describe or categorize, because it combined networking features with
channel-based I/O systems, which placed conflicting demands on switches
(channels prefer circuit switching and networks prefer packet switching). In-
itially, FibreChannel systems all required switches; however, after a presen-
tation about SCI (perhaps the timing was a coincidence) a new project was
initiated to define a ring for FibreChannel too, called the FibreChannel Ar-
bitrated Loop.

The other companies that adopted SCI mainly did so in order to take
advantage of its technology for high performance rather than for low cost,
and most had no interest in using it as an open interchange standard enabling
them to interconnect with others’ products.

Another obstacle is inherent in the nature of SCI: SCI was designed to
be integrated directly into ICs that are mainly doing something else, such as
processors, I/O controllers, switches, and memory controllers. Previous buses
created a market for transceiver chips, which met the bus standard on one
side and used conventional logic signals on the other. But conventional logic’s
external signals are not fast enough to keep up with SCI, so the back end of
an SCI transceiver has to use a wider data path than the SCI links do.

The Working Group should have gone on to specify a standard for such a
back-end bus, but did not. There was a reluctance to standardize yet another
bus as part of SCI, since the design process for the SCI standard was driven
by the problems inherent in such buses. Following that logic always ends up
moving SCI right into the customer’s ASIC. But that makes it hard to get
started—we were too early for solving the problem by putting SCI into every
vendor’s ASIC cell library.

Three companies designed (for sale to the public) different chips that
interfaced SCI to other circuits via back-end buses: Dolphin Interconnect So-
lutions [5], Vitesse Semiconductor [18], and Interconnect Systems Solution
[7]. The production versions of these did converge on the official standard,
though not all at the full SCI speed. The first product from Interconnect
Systems Solution uses an 8-bit-wide link (IEEE Std 1596.3) and runs at
100 MByte/s in order to take advantage of low cost CMOS processes. This
product was actually designed for a particular customer, much of whose ap-
plication (including a processor!) is integrated on the same chip (in the true
spirit of SCI), but it can also be packaged for general sale with the custom
portion disabled.

27. Industrial Takeup and Future Developments 471

In 1994, I left the Stanford Linear Accelerator Center, which had suppor-
ted my work on SCI and related standards, and formed a new organization
called SCIzzL at Santa Clara University, at the invitation of Prof. Qiang Li.
SCIzzL (pronounced “sizzle,” or like “scissors,” the other cutting-edge tool
that’s safe to use) is a partial acronym abbreviating something like “Scalable
Coherent Interface Local Area Multiprocessor Users, Developers, and Ma-
nufacturers Association,” which did not seem to lend itself to any catchy
and concise acronym, notwithstanding various attempts at substitution and
reordering.

SCIzzL was envisioned as providing a focus for the formation of an SCI
trade association, and as a mechanism for supporting ongoing standardiza-
tion work in the IEEE to enhance SCI and its relatives and descendants.
Funding for SCIzzL relies wholly on memberships or donations from inte-
rested companies, which turned out to be a problem due to the nature of
the SCI market until now. Fortunately, one of those supporting standards,
IEEE Std 1596.4 RamLink, became the initial focus of the memory industry’s
effort to create SLDRAM (Synchronous Link Dynamic Random Access Me-
mory, P1596.7) as an alternative to the Rambus RDRAM memory devices,
which it was feared would put Intel in control of the memory industry. For
several years this effort provided ample support for SCIzzL, but also a sig-
nificant distraction from SCI. In 1999 the SLDRAM was abandoned, though
it had demonstrated technical success with two independent working device
designs, because Intel had made clear its commitment to RDRAM. SLDRAM
Inc. was renamed “Advanced Memory International, Inc.” and became a mar-
keting and coordinating organization for the remaining DRAM industry, and
SCIzzL divorced from that group, to find out whether the SCI marketplace
has yet grown enough to begin supporting further standards development,
and a users association, on its own.

The advanced signaling technology developed for the SLDRAM bus has
become SLIO in JEDEC, and will apparently be used for the second genera-
tion of Double-Data Rate DRAMs (DDR2). SLIO has individually adjustable
high and low levels for drivers, fine adjustment of individual bit timing, and
the option of using stub-decoupling resistors (compensating for the attenua-
ted driver signal amplitude with the individual adjustments as necessary).
The signaling is mostly single-ended, but with differential clocks.

Another part of SCI that has become widely adopted is IEEE 1596.3
LVDS, Low Voltage Differential Signals. This standard was deliberately sco-
ped to apply specifically to SCI (otherwise the whole world would have piled
on and it might never have finished due to territorial disputes etc.). Almost
immediately it was generalized and specified for standard telecom industry
rates, like 622 MBit/s, as TIA/EIA-644. A chip-enable has been added by
some vendors, with double the current drive, in order to allow using LVDS
in a bus configuration rather than point-to-point. LVDS has become the de
facto standard for connecting flat panel displays in laptop computers.

472 D. B. Gustavson

GLVDS, a more advanced version developed and used by Ericsson Tele-
com is now being standardized in EIA/JEDEC Committee 16. This has signal
swings similar to LVDS (0.25 to 0.5 V) but has the low level near ground (the
G of GLVDS) instead of having the center value above 1 V as LVDS does.
At the time LVDS was defined, its levels seemed adequate for several gene-
rations of power supply voltages and several chip technologies, and CMOS
manufacturers thought they needed some voltage above ground to make the
chips practical. GLVDS also defines the common-mode termination scheme,
which was left unspecified in 1596.3.

27.3 Commercial Adoption of SCI

27.3.1 Interface Chips and Products

Dolphin Interconnect Solutions. Dolphin began as a minicomputer com-
pany, Norsk Data, then reorganized as Dolphin Server Technology when
Norsk Data withdrew from that business, and finally abandoned the ser-
ver market entirely, for an interconnect business based on SCI. Dolphin has
experimented with several strategies along the way, and has had to discover
the difficult tradeoffs between being a chip supplier and being a board or
subsystem vendor and risking competition with its own customers. Some po-
tentially large customers, e.g. Bit 3 Computer, were frightened away from SCI
because of the prospect of competing with their sole supplier of SCI chips,
which I believe was one of the biggest setbacks for SCI market acceptance
in the early years. Dolphin is sensitive to this problem, and is increasingly
supportive of growing the market as a whole rather than maintaining a near
monopoly.

Dolphin’s products include CMOS SCI interface chips, interface boards,
switches, and development tools. See their web site [5] for current information;
in particular, check the application notes at [6].

Dolphin Interconnect Solutions is still by far the dominant producer of
SCI interfaces.

Vitesse Semiconductor. Vitesse Semiconductor builds a GaAs SCI inter-
face for Sequent Computer (now being owned by IBM), but has not succeeded
in marketing it broadly. This was the first practical chip to run at full stan-
dard speed (1 GByte/s). I think most customers are reluctant to use GaAs,
regarding it as exotic, and they do not think they really need GByte/s band-
width. I think a good strategy would have been to show that this system
can economically provide excellent performance for a large number of atta-
ched devices that have ordinary bandwidth requirements, without needing
an expensive switch. In other words, ignore the link bandwidth and focus on
the cost for n-port interconnect performance based on a simple ring, with
the built-in safety feature that switches can be added later as requirements

27. Industrial Takeup and Future Developments 473

increase. Vitesse says the chips are still for sale to other customers, but a
manual search of their Web site today reveals no mention of SCI or of those
chips, and recent private comments from the management indicate that they
have given up expanding this market.

Interconnect Systems Solution. ISS was founded by Khan Kibria, the
lead designer of an SCI chip being designed at Unisys with other companies,
including Vitesse. ISS does custom SCI (and other) chip design, but with an
eye to leveraging the custom work to make SCI parts available to others. The
ISS business model has been to support growth out of sales, which has hin-
dered rapid growth. What is needed for making these chips broadly available
is an investor who would fund a production run, and then sell the chips to
various customers. The first chips use an 8-bit-wide SCI link and run at 100
MByte/s per link. When packaged for sale as general purpose chips, they use
a simple wide back-side bus and internal features are memory-mapped for
easy access in a wide variety of applications.

Lockheed Martin. Lockheed has developed a fast 16-port switch called
RelianetSCI; see [9].

27.3.2 Coherent Shared Memory Implementations

Convex/Hewlett Packard. The first computers to use SCI as a high-
performance cache-coherent shared-memory (CC-NUMA) multiprocessor in-
terconnect were the Convex Exemplar supercomputers. Multiple SCI rings
were used in parallel to increase bandwidth, connecting switch-based hyper-
nodes of 8 PA-RISC processors. The SCI chips started from a Dolphin design,
but were optimized by Convex and fabricated by Fujitsu in GaAs.

The Exemplar allowed writing programs on an HP workstation, and trans-
parently scaling them up for parallel execution by re-compilation, gradually
optimizing the program for more efficient operation across a larger num-
ber of processors. This is the beauty of coherent shared memory compared
to message-passing for multiprocessing. On the other hand, conversion from
a single workstation environment to a message-passing cluster environment
usually requires a comprehensive rewriting and reorganization of the software.

Hewlett Packard bought Convex and added these machines to the top
end of its line of workstations. Further optimization took place in subsequent
generations of the product, and Convex/HP has not made the SCI signals
available for external connections, so there has been no motivation for them
to adhere to the standard—SCI was just a cheap source of useful technology.

Convex did make several attempts, in partnership with the DOE’s St-
anford Linear Accelerator Center, to get funding from the Department of
Energy or the Department of Defense, to build an SCI-standard interface for
external use. This would have been tested in the demanding High Energy
Physics particle-accelerator laboratory as a tool for rapid data acquisition
and analysis. Though the specifications of the proposed Convex SCI system

474 D. B. Gustavson

seemed like a perfect fit for several DOE and DOD problems, no funding was
ever forthcoming. This was probably partly an accident of bad timing, as the
DOD was then in the process of commercializing its own funded technology,
Myrinet. If Myrinet succeeded commercially, the government funders could
easily justify their continued existence as a government program. But if it
was surpassed by some other technology, they would not look so good.

Sequent Computer. Sequent specializes in high-end multiprocessor servers
for commercial applications, mainly transaction processing. They had used a
highly optimized backplane bus along with very carefully tuned software in
order to get high performance for particular classes of application, but they
had reached the fundamental limits of that technology.

The Sequent NUMA-Q products are SCI based. Sequent no longer builds
any bus-based systems.

The first generation of NUMA-Q did not take full advantage of SCI’s po-
tential speed, opting instead to minimize risk by allowing easy design updates
via firmware uploads. Subsequent generations were able to proceed with con-
fidence into faster hardware implementations. Sequent has not made the SCI
signals available for external use, so once again there is little motivation to
adhere to the standard in all respects, and a variety of specific optimizati-
ons have undoubtedly been incorporated. However, the SCI links have been
implemented with Vitesse GaAs chips, which have also been available for
purchase by others, so the low level protocols are presumably quite close to
the standard.

The Sequent systems are based on an SMP Quad of Intel processors,
four processors sharing a common memory via a local SMP bus. Sequent
converts between the Intel MESI and the SCI coherence protocols in their
interface to this bus. The Quad memory occupies a fraction of the global
address space. Sequent’s operating system, “ptx,” is spread across as many
as 16 Quads. More details can be found in White Papers at [13]. (In particu-
lar, see: “NUMA-Q: An SCI based Enterprise Server”, “Implementation and
Performance of a CC-NUMA System”, and “Considerations in Implementing
a System Based on SCI”.)

An overview of the NUMA-Q 2000 can be found at [12]. The NUMA-Q
1000 (see [11]) uses a simplified version of the SCI protocol for a two node
system, but does not use the SCI physical layer.

In 1999, IBM announced that it would buy Sequent to fill in the high end
of its server line.

Data General. Data General uses SCI in its high-end AV20000 and AV25000
servers, referring to it as their “NUMALiiNE Technology.” Their approach
is similar to Sequent’s, using quad Intel processors as the building block,
and designing their own coherent interface from the quad’s bus to SCI. Data
General uses the Dolphin SCI interface chips, so is very close to the stan-
dard, but has not made the SCI links accessible outside the machines as yet.
However, rumor has it that DG envisions using SCI eventually as an open

27. Industrial Takeup and Future Developments 475

interface for third party I/O devices, which might become the first true use
of SCI as an interchange standard as opposed to just being a cheap source of
high performance technology for internal use.

More details about the Data General machines can be found in their
White Papers at [3]. Other articles of interest include [2] and [4].

27.3.3 Non-coherent Implementations

Cray Research. Cray Research studied SCI and adopted a variant of it in
1995 as the GigaRing I/O system for the three larger families of Cray main-
frames, the J90, T90 and T3E MPP plus a suite of I/O subsystem modules
including FibreChannel disk arrays, HIPPI channel adapters, ESCON and
Block-Mux tape channel adapters and a Multiple Purpose Node (MPN) ad-
apter based on the SPARC processor and SBus technology for various other
peripheral and network adapters. The GigaRing I/O system provided a com-
mon I/O product base for the mainframe products as well as a flexible system
interconnect between mainframes or shared I/O.

Because of production considerations, to fit into qualified chips, it was
necessary to double the width and halve the speed of standard SCI. In ad-
dition, encoding was added so that ground-potential differences could be
blocked with high-pass capacitive coupling, and dual counter-rotating rings
were used in order to support live removal and insertion of devices or systems,
as well as for higher performance. Since compatibility with the standard was
not a consideration, Cray also added protocol features to support multiple
virtual channels.

IBM. IBM’s AS400 designers began looking for a way to “firmly couple”
systems in about 1991, discovered SCI and decided that SCI’s direction loo-
ked about right. Though the original motivating project didn’t develop as
expected, IBM built a test chip in BiCMOS and described it in a 1995 IS-
SCC paper. This paper concluded that the SCI technology was robust and
manufacturable. Eventually an 8-bit-wide version was designed for use as a
mezzanine bus for I/O, the RIO interface, which is now shipping in AS400
and RS6000 machines. The physical signaling is similar to SCI’s LVDS, and
the interfaces implement per-bit deskew. IBM was the first to implement and
validate SCI’s per-bit deskew scheme. Like SCI, the signals in these parallel
links are not encoded for DC balance. IBM favors longer CRC codes than
SCI’s 16 bits; 32 bit CRC was used for the test chip.

Some of the same IBM designers are now working on the physical layer for
FutureIO; the FutureIO links look rather similar, but probably will include
encoding for DC balance to simplify ground-isolation in large systems.

Scali. Scali began as a result of experience with military signal processors at
Kongsberg. The plan was to demonstrate equivalent or better performance to
custom-built signal processors by using COTS technology, and the strategy
was to do this by connecting processors with SCI.

476 D. B. Gustavson

Scali began with building blocks of dual SPARC processors sharing dual
SCI interfaces (via Sbus). With two 4-port switches from Dolphin, this allows
8 processors to be interconnected redundantly for reliable operation.

The next family of products was based on Intel processors connecting
to SCI interfaces via the PCI bus. In 1998 a 64- and a 192-processor system
were delivered to Paderborn [8]. With two SCI interfaces on a PCI card, Scali
implemented a 2-dimensional toroidal interconnect, which does not require
any switches [10]. The Scali technology is now the basis for the Siemens
hpcLine computers [16].

Siemens. Siemens uses SCI to connect large numbers of PCI and other buses
in the enhanced I/O system for its RM600E processors [17]. In 1999, Siemens
began to market Scali machines as building-block components for building
large systems, called the hpcLine [16].

Sun. There are two main applications of SCI at Sun as of 1999, clustering
and high-performance computing, with other applications expected soon.

Clustering is currently limited to 2, 3 or 4 nodes (using the Dolphin 4-port
switch). The hardware is made by Dolphin, the software mostly by Sun.

The low end is the Ultra 2 desktop, with Sbus interface. At present, only
Sbus machines are shipping, but PCI is coming. Currently, most of Sun’s
Enterprise Servers (Starfire) have Sbus, but PCI models will be available
soon.

There will also be a PCI-based Workgroup Server E250, and a bigger one,
E450, that support SCI, so essentially the whole server product line will soon
be supporting SCI.

Auspex. Auspex makes high-end network storage servers, called 4Front, ba-
sed on SCI; see [1].

Silicon Graphics. Silicon Graphics Inc. has been a strong exponent of co-
herent shared memory, and has made a very strong case for SCI on several
occasions (but without mentioning SCI; see [14]). However, SGI chose to
define its own interconnect, most recently called a System Area Network,
formerly known as Super-HIPPI. As of 1999, I have the impression that SGI
was not dominant enough in the marketplace to succeed with this strategy.

SGI bought Cray Research just as Cray was implementing its SCI-like
GigaRing, but did not stop Cray from proceeding with the GigaRing deploy-
ment. At the time of this writing, SGI is cutting back severely, and is reported
to be ready to sell Cray again.

27.4 Future Directions

There are several high speed signaling technologies (e.g., Gigabit Ethernet
and FibreChannel) and at least two I/O architectures (NGIO and FutureIO)
that are beginning to move into SCI’s territory.

27. Industrial Takeup and Future Developments 477

NGIO and FutureIO appear at first blush to be doing essentially identical
tasks—they interface to a processor at its full-bandwidth nexus, the “North
Bridge,” and connect to a wide range of I/O devices with high bandwidth.
But they do not solve all the problems—they do not have shared memory!

Shared memory is highly desired by the users of multiprocessor systems
who want high performance, because it can provide interprocess communi-
cation latencies that are about 100 times better than channel-based commu-
nication for a given technology. (With shared memory, communication is a
part of one memory reference instruction, instead of the many instructions
needed by non-shared-memory methods to set up buffer content, start the
data moving, and extract it at the receiving end.)

The hard part of providing shared memory connections (e.g. for use by
SCI) has been getting full access to the processor bus, which both NGIO and
FutureIO will solve.

The real problem is one of business strategy. If Intel allowed NGIO to
use its access to the processor bus to support coherent shared memory, then
anyone could build large powerful multiprocessors by stacking arrays of cheap
high-volume processors, which would wipe out the high-profit high-end mar-
ket for special expensive processor chips that has been carefully guarded until
now.

Only a few companies have been allowed to build their own interfaces to
Intel processors at the full processor-bus level, i.e. Sequent and Data General,
for use in their shared memory high-end servers using SCI. Another approach,
by Corollary, was limited to smaller systems, but anyway Corollary has now
been bought by Intel.

27.4.1 IEEE P2100 (SerialPlus)

The original SCI architects have been looking at designs for the follow-on ge-
neration for SCI ever since SCI’s completion. This process has gone through
several generations of complete ground-up redesign, while waiting for the
right time, the right customer, the right marketing strategy, to make brin-
ging out the next generation a useful exercise. There is a balance to maintain
between obsoleting existing products, which can kill a standard, and letting
the technology stagnate, which can also be fatal. The place where this work
has been most visible has been IEEE P1394.2 Serial Express, later renumbe-
red as P2100, and now with a tentative new name, SerialPlus.

Although these protocols are capable of doing everything SCI does, and
more, the SerialPlus document is positioned for serial links of modest speed,
and with the capability of encapsulating whole SerialBus packets. This is to
take advantage of a possible market opportunity for providing a truly scalable
backbone (and more) to allow extending SerialBus systems arbitrarily. So,
cache coherence and parallel links are barely mentioned, but behind the scenes
the protocols have been designed to support those extensions smoothly, and

478 D. B. Gustavson

to add some useful features to SCI. The following paragraphs reflect this new
positioning in the presentation of SerialPlus.

SerialPlus is a concurrent bus, which can do many things at once. Like
NGIO and FutureIO, SerialPlus devices can be connected by cables to switch
hubs. However, in addition SerialPlus allows devices to be connected as a
daisy-chained cable bus, so that many devices can share a switch port, or not
use a switch at all. This makes SerialPlus much more versatile, gives it a much
lower entry cost, and allows much better balancing of device requirements
against switch port costs.

SerialPlus represents several generations of refinement of the proven SCI
technology, to make it more consumer friendly, more robust, more versatile,
and more economical. At present SerialPlus is being positioned by its desi-
gners as a useful backbone for interconnecting IEEE Std 1394 SerialBus de-
vices (digital video cameras etc.), to get past the 1394 length and bandwidth
limitations. (There are also other IEEE projects working on these problems,
P1394.1 and P1394b.)

The advantage of SerialPlus is its scalability. Even though it will probably
start at 1 GBit/s speeds for 1394-interconnecting applications, its protocols
scale up to any speed that technology can offer, and a SerialPlus system
can scale to any size or performance requirement by adding additional ca-
bles and switches. SerialPlus eases backward compatibility for future devices
by supporting multiple speeds, intermixed. It supports isochronous trans-
fers (guaranteed delivery time as required by audio/video data), live inser-
tion/removal of devices without disturbing other users, discovery protocols,
automatic hardware error recovery, nonstop robustness or failover by means
of redundant paths and redundant packet streams, and arbitrary connection
topology.

27.4.2 Concurrent Buses—A New Name for this Technology

SerialPlus (like SCI) is a concurrent bus. Other buses only allow one device
to transmit at a time, but a concurrent bus allows any number of devices to
transmit at the same time. The signals in the bus cables are directed so that
these transmissions do not interfere with each other, and no information is
ever lost. Each device cooperates by storing any information it receives while
transmitting, and then sending that information along as soon as possible.
I.e., only one signal at a time can be present on a particular piece of cable,
but different signals can be active on every piece of cable at the same time.

Obviously this means that, under the covers, SerialPlus cannot really be
a bus. Real buses have continuous unbroken signal wires from one end to the
other, and wires have no signal-directing ability, so multiple transmissions
always interfere.

So why do we call SerialPlus a bus? Because it acts like one as far as all the
connected devices are concerned. They can do reads, writes, and locks just as
on any ordinary bus. They do not need to know about network protocols or

27. Industrial Takeup and Future Developments 479

routing, they just ask for data from some 64-bit address and soon the data
arrive.

Of course, not all ordinary buses act alike—SerialPlus acts like a high
performance split-transaction bus, where the bus is released for other uses
between the data request and the arrival of those data. More primitive buses
are more common, where one device holds the bus, blocking all other users,
until the requested data arrive; but these “unified-transaction” buses are
hopelessly inefficient and not useful where high performance is desired. Split
transaction buses were the first step toward concurrence, using the bus wires
as efficiently as possible. However, they were only able to scale to about 10
times the performance of primitive buses. Scaling further requires support
for switches and some network-like features.

Moving from unified to split-transaction buses introduced several new
problems: mutual exclusion/locks; ordering; and resource allocation. Many
users encounter these issues for the first time when they make a leap from
unified-transaction buses to SerialPlus or SCI, not realizing that these were
already issues that had to be handled by split-transaction buses, and thus
inappropriately consider SerialPlus or SCI to be complex—that is not a fair
or reasonable comparison.

27.4.3 Concurrent Behavior is Essential for Scalability

Scalable architectures are ones that do not change their behavior as techno-
logy advances—they just run faster, and gain higher capacity.

As a contrasting example, a 1394 SerialBus system spends time arbitrating
to decide which device will transmit next. The arbitration takes a fixed time,
independent of technology (here technology means the currently possible sig-
nal bandwidth). This fixed delay interferes with scaling up in bandwidth—
one has to send more data with each transmission as the bandwidth goes up,
or else the system performance becomes limited by the constant arbitration
delay times. Making packets longer is not a minor problem—it causes back-
ward compatibility problems or inefficiencies, and infrastructure problems
(especially for interfaces and bridges that have to provide buffer storage for
packets).

Arbitration also requires a time proportional to the physical size of the
connected system, which thus forces limits on the possible system size. Fur-
thermore, when transmitting data, 1394 sends the same information over all
the cables in the system. Thus adding cables does not add capacity for 1394,
as it does for SerialPlus or SCI.

This is not a criticism of 1394, which was designed for absolute minimum
cost in a single desktop I/O environment, consciously ignoring scalability
considerations, which were in those days believed to be expensive (we were
wrong). However, for high-end SerialBus users the resulting problems are
already real, and gradually more and more users will bump into the built-in
limits.

480 D. B. Gustavson

Now that technology has advanced to the point where the cost of logic
gates is not the primary constraint in a system design, there are big advanta-
ges to using scalable architectures, which can just keep growing and adapting
smoothly to use new technology as it evolves, generation after generation.

Standardized scalability is good for the consumer, but may not fit the bu-
siness models of established manufacturers. Planned obsolescence and shar-
ply defined market segments can support higher profits on a continuing basis.
Standardized scalability replaces this controlled environment with free mar-
ket forces, which make profits uncertain and the future unpredictable.

Thus the consumer’s interests are always aligned with the underdog’s—
it’s a very dynamic world.

References

1. Auspex. 4Front. http://www.auspex.com/pdf/tr24.pdf
2. R. Clark. SCI Interconnect Chipset and Adapter: Building Large Scale Enter-

prise Servers with Pentium II Xeon SHV Nodes.
http://www.dg.com/about/html/sci interconnect chipset and a.html

3. Data General. http://www.dg.com/about/html/white papers.html
4. Data General’s NUMALiiNE Technology: The Foundation for the AV 25000.

http://www.dg.com/aviion/html/av 25000 enterprise server.html,
http://www.dg.com/about/html/av25000 foundation.html,
http://www.dg.com/aviion/html/av 20000 enterprise server.html,
http://www.dg.com/aviion/html/av 20000 technical overview.html

5. Dolphin Interconnect Solutions. http://www.dolphinics.com
6. Dolphin Interconnect Solutions. Application Notes.

http://www.dolphinics.com/dolphin2/interconnect/applications/apps.html
7. Interconnect Systems Solution. http://www.iss-us.com
8. Paderborn Center for Parallel Computing. http://www.upb.de/pc2
9. Lockheed Martin. RelianetSCI. http://www.lmco.com/minn/raj.htm
10. Scali. http://www.scali.com/Presentation/sld011.htm
11. Sequent. NUMA-Q 1000.

http://www.sequent.com/products/servers/numaq1000/
12. Sequent. NUMA-Q 2000. http://www.sequent.com/products/highend srv/
13. Sequent. White Papers.

http://www.sequent.com/solutions/whitepapers/index.html
14. SGI. http://www.SCIzzL.com/SGIarguesForSCI.html
15. SCIzzL. http://www.SCIzzL.com
16. Siemens. HPCLINE.

http://www.siemens.com/computer/hpc/en/hpcline2/index.htm,
http://www.siemens.com/computer/hpc/en/hpcline5/index.htm

17. Siemens. RM600E.
http://manuals.mchp.siemens.de/servers/rm/rm us/rm pdf/rm600e37.pdf

18. Vitesse Semiconductor. http://www.vitesse.com

List of Contributors

A. Acharya
Department of Computer Science
University of California
Santa Barbara, CA 93103
USA
acha@cs.ucsb.edu

G. Acher
Technische Universität München
Institut für Informatik
Lehrstuhl für Rechnertechnik und
Rechnerorganisation (LRR)
D-80290 München
Germany
acher@in.tum.de

G. Alléon
Aérospatiale Joint Research Centre
12 rue Pasteur, BP 76
F-92152 Suresnes Cedex
France
guillaume.alleon@siege.aerospatiale.fr

A. Belias
Rutherford Appleton Laboratory
Didcot
Oxfordshire
OX11 OQX
United Kingdom
a.belias@rl.ac.uk

T. Bemmerl
RWTH Aachen
Lehrstuhl für Betriebssysteme
Kopernikusstr. 16
D-52056 Aachen
Germany
contact@lfbs.rwth-aachen.de

A. Bogaerts
CERN
CH-1211 Geneva 23
Switzerland
andreas.johannes.bogaerts@cern.ch

D. Botterill
Rutherford Appleton Laboratory
Didcot
Oxfordshire
OX11 OQX
United Kingdom
d.botterill@rl.ac.uk

M. Brune
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Takustr. 7
D-14195 Berlin-Dahlem
Germany
brune@zib.de

H. Bugge
Scali AS
Hvamstubben 17
N-2013 Skjetten
Norway
hob@scali.no

482 List of Contributors

R. Butenuth
Operating Systems and Distributed
Systems Research Group
Universität-GH Paderborn
Fürstenallee 11
D-33095 Paderborn
Germany
butenuth@upb.de

E. Cecchet
SIRAC Lab.
INRIA Rhône-Alpes
ZIRST - 655, avenue de l’Europe
F-38330 Montbonnot Saint-Martin
France
emmanuel.cecchet@inrialpes.fr

J. Dawson
Argonne National Laboratory
Argonne, IL 60439
USA
jwd@hep.anl.gov

E. Denes
CERN
CH-1211 Geneva 23
Switzerland
ervin.denes@cern.ch

A. C. Döring
Medical University of Lübeck
Institute of Computer Engineering
Ratzeburger Allee 160
D-23538 Lübeck
Germany
doering@iti.mu-luebeck.de

M. Dormanns
RWTH Aachen
Lehrstuhl für Betriebssysteme
Kopernikusstr. 16
D-52056 Aachen
Germany
contact@lfbs.rwth-aachen.de

M. Fischer
Universität Mannheim
Institut für Technische Informatik
Rhenania-Geb. B6, 26
D-68159 Mannheim
Germany
mfischer@mufasa.informatik.
uni-mannheim.de

F. Giacomini
CERN
CH-1211 Geneva 23
Switzerland
francesco.giacomini@cern.ch

D. B. Gustavson
SCIzzL/Santa Clara University
1946 Fallen Leaf Lane
Los Altos, CA 94024-7206
USA
dbg@scizzl.com

J. S. Hansen
Department of Computer Science
University of Copenhagen (DIKU)
Universitetsparken 1
DK-2100 Copenhagen East
Denmark
cyller@diku.dk

A. T. Haugsdal
Scali AS
Hvamstubben 17
N-2013 Skjetten
Norway
ath@scali.no

R. Hauser
CERN
CH-1211 Geneva 23
Switzerland
reiner.hauser@cern.ch

List of Contributors 483

O. Heinz
Paderborn Center
for Parallel Computing
Universität-GH Paderborn
D-33102 Paderborn
Germany
heinz@upb.de

H.-U. Heiss
Operating Systems and Distributed
Systems Research Group
Universität-GH Paderborn
Fürstenallee 11
D-33095 Paderborn
Germany
heiss@upb.de

H. Hellwagner
Institute of Information Technology
University of Klagenfurt
A-9020 Klagenfurt
Austria
hermann.hellwagner@uni-klu.ac.at

G. Horn
SINTEF Electronics and Cybernetics
Forskningsveien 1
P.O. Box 124 Blindern
N-0314 Oslo
Norway
Geir.Horn@ecy.sintef.no

C. Hortnagl
CERN
CH-1211 Geneva 23
Switzerland
christian.hortnagl@cern.ch

R. Hughes-Jones
University of Manchester
Oxford Road
Manchester, M13 9PL
United Kingdom
r.hughes-jones@man.ac.uk

L. P. Huse
Scali AS
Hvamstubben 17
N-2013 Skjetten
Norway
lph@scali.no

M. Ibel
Department of Computer Science
University of California
Santa Barbara, CA 93103
USA
ibel@cs.ucsb.edu

W. Karl
Technische Universität München
Institut für Informatik
Lehrstuhl für Rechnertechnik und
Rechnerorganisation (LRR)
D-80290 München
Germany
karlw@in.tum.de

A. Keller
Paderborn Center
for Parallel Computing
University of Paderborn
Fürstenallee 11
D-33102 Paderborn
Germany
kel@upb.de

R. Kleber
Institut für Informatik
Technische Universität München
D-80290 München
Germany
kleber@in.tum.de

P. T. Koch
Department of Computer Science
University of Copenhagen (DIKU)
Universitetsparken 1
DK-2100 Copenhagen East
Denmark
koch@diku.dk

484 List of Contributors

H. Kohmann
Dolphin Interconnect Solutions
Olaf Helsets vei 6
N-0621 Oslo
Norway
info@dolphinICS.no

S. Kolya
University of Manchester
Oxford Road
Manchester, M13 9PL
United Kingdom
scott@a3.ph.man.ac.uk

C. Kurmann
Laboratory for Computer Systems
Swiss Institute of Technology (ETH)
CH-8092 Zürich
Switzerland
kurmann@inf.ethz.ch

M. Leberecht
Technische Universität München
Institut für Informatik
Lehrstuhl für Rechnertechnik und
Rechnerorganisation (LRR)
D-80290 München
Germany
markus.leberecht@in.tum.de

M. C. Liaaen
Dolphin Interconnect Solutions
Olaf Helsets vei 6
N-0621 Oslo
info@dolphinICS.no
Norway

V. Lindenstruth
Institute for High Energy Physics
Schröder Str. 90
D-69120 Heidelberg
Germany
ti@ihep.uni-heidelberg.de

G. Lustig
Medical University of Lübeck
Institute of Computer Engineering
Ratzeburger Allee 160
D-23538 Lübeck
Germany
lustig@iti.mu-luebeck.de

E. Maehle
Medical University of Lübeck
Institute of Computer Engineering
Ratzeburger Allee 160
D-23538 Lübeck
Germany
maehle@iti.mu-luebeck.de

M. Maier-Stahel
Operating Systems and Distributed
Systems Research Group
Universität-GH Paderborn
Fürstenallee 11
D-33095 Paderborn
Germany
stahlie@upb.de

D. Mercer
University of Manchester
Oxford Road
Manchester, M13 9PL
United Kingdom
d.mercer@man.ac.uk

R. Middleton
Rutherford Appleton Laboratory
Didcot
Oxfordshire
OX11 OQX
United Kingdom
r.middleton@rl.ac.uk

List of Contributors 485

W. Obelöer
Medical University of Lübeck
Institute of Computer Engineering
Ratzeburger Allee 160
D-23538 Lübeck
Germany
obeloeer@iti.mu-luebeck.de

M. Oberhuber
Technische Universität München
Institut für Informatik
Lehrstuhl für Rechnertechnik und
Rechnerorganisation (LRR)
D-80290 München
Germany
oberhube@in.tum.de

M. Ohlenroth
Fakultät für Informatik
Technische Universität
Chemnitz-Zwickau
D-09111 Chemnitz
Germany
matthias.ohlenroth@informatik.
tu-chemnitz.de

K. Omang
Scali AS
Hvamstubben 17
N-2013 Skjetten
Norway
knuto@scali.no

T. Priol
IRISA/INRIA
Campus de Beaulieu
F-35042 Rennes Cedex
France
priol@irisa.fr

A. Reinefeld
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Takustr. 7
D-14195 Berlin-Dahlem
Germany
ar@zib.de

C. René
IRISA/INRIA
Campus de Beaulieu
F-35042 Rennes Cedex
France
crene@irisa.fr

H. Richter
Institut für Informatik
Technische Universität München
D-80290 München
Germany
richterh@informatik.tu-muenchen.de

X. Rousset de Pina
SIRAC Lab.
INRIA Rhône-Alpes
ZIRST - 655, avenue de l’Europe
F-38330 Montbonnot Saint-Martin
France
xavier.rousset@inrialpes.fr

E. Rustad
Scali AS
Hvamstubben 17
N-2013 Skjetten
Norway
eir@scali.no

H. Ry
Scali AS
Hvamstubben 17
N-2013 Skjetten
Norway
hwr@scali.no

486 List of Contributors

K. Schauser
Department of Computer Science
University of California
Santa Barbara, CA 93103
USA
schauser@cs.ucsb.edu

J. Schlereth
Argonne National Laboratory
Argonne, IL 60439
USA
jls@hep.anl.gov

M. Schmitt
Department of Computer Science
University of California
Santa Barbara, CA 93103
USA
schmittm@cs.ucsb.edu

K. Scholtyssik
RWTH Aachen
Lehrstuhl für Betriebssysteme
Kopernikusstr. 16
D-52056 Aachen
Germany
contact@lfbs.rwth-aachen.de

M. Schulz
Technische Universität München
Institut für Informatik
Lehrstuhl für Rechnertechnik und
Rechnerorganisation (LRR)
D-80290 München
Germany
schulzm@in.tum.de

J. Simon
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Takustr. 7
D-14195 Berlin-Dahlem
Germany
simon@zib.de

T. Stricker
Laboratory for Computer Systems
Swiss Institute of Technology (ETH)
CH-8092 Zürich
Switzerland
tomstr@inf.ethz.ch

H. Taskin
Operating Systems and Distributed
Systems Research Group
Universität-GH Paderborn
Fürstenallee 11
D-33095 Paderborn
Germany
bond@upb.de

J. Weidendorfer
Institut für Informatik
Technische Universität München
D-80290 München
Germany
josef.weidendorfer@in.tum.de

P. Werner
CERN
CH-1211 Geneva 23
Switzerland
per.werner@cern.ch

F. Wickens
Rutherford Appleton Laboratory
Didcot
Oxfordshire
OX11 OQX
United Kingdom
f.wickens@rl.ac.uk

Subject Index

Active Messages, 98, 209, 224, 240, 247,
267–277, 279, 351, 356, 357, 359, 444

address mapping, 23, 24, 26, 32, 49, 61,
71, 72, 74, 78–80, 86, 128, 177, 180,
181, 183, 184, 187, 193, 197, 199,
212–214, 219, 225, 226, 242, 263, 270,
273, 277–279, 282, 293–296, 300, 306,
315, 321, 322, 325, 327, 329

ATLAS, 31, 397, 398, 402, 403, 410,
411, 413

ATM, 50, 110, 209, 224, 228, 239, 240,
245, 247, 269, 270, 346, 402, 413, 456

ATOLL, 32
atomic transaction, 21, 201, 293, 306
ATT, 23, 74, 75, 183, 194, 198, 279, 293
Auspex, 476
AViiON, 26, 383

B-Link, 72, 73, 91–93, 95, 99, 128–130,
134, 136–138, 142, 147, 148, 167–169,
172–174, 419, 420, 427

bandwidth allocation, 8, 15, 30, 106,
110, 111, 113, 125

BB&N, 467
BIP, 62–65, 67, 241

cache coherence, 5, 9–11, 19–22, 26, 27,
29, 30, 34, 58, 71, 151, 294, 430, 465,
468, 477

call tree, 350, 354, 363
CC-NUMA, 26, 27, 31, 33, 34, 328, 329,

394, 430, 473, 474
CCS, 434, 436–438, 440
Cilk, 352, 355, 356, 358, 359, 362
CluStar, 61, 369
Cobra, 333, 340–347
CODEX, 422, 428
Compaq, 32, 33, 257
compute cluster, 3, 9, 32, 33, 40, 89,

209, 210, 222, 225, 307, 314, 323,
329, 367, 443

Concert, 356, 363
concurrent bus, 469, 478
contention, 251, 336, 343, 390, 408
Convex, 23, 26, 34, 282, 394, 473
CORBA, 264, 265, 333–341, 343–347
COTS, 257, 260, 367, 379, 469, 475
Cray, 39, 45, 46, 48, 52, 56, 57, 60, 61,

63, 65, 66, 249, 258, 269, 308, 455,
459, 475, 476

DASH, 33
data acquisition, 3, 7, 25, 31, 83,

125–127, 129, 134, 146, 147, 151, 152,
164, 413, 473

Data General, 26, 34, 114, 383, 474,
475, 477

dataflow, 349, 352–356, 362, 363
deadlock (avoidance), 18, 47, 115–117,

119, 120, 134, 203, 269, 271, 427,
433, 468

device driver, 23, 25, 65, 71, 128, 130,
179, 185, 187, 188, 207, 219, 220,
231, 232, 242, 252, 254, 264, 270,
283, 298, 309, 313, 327, 329, 330, 345

direct deposit, 39, 41, 42, 44, 52–54, 56,
58, 65–67

DMA, 25, 30, 48, 52–54, 56, 58, 61, 67,
72–74, 76, 78, 80, 82, 86, 90, 91, 93,
95, 97, 128, 191, 194–196, 202, 203,
211, 220, 222, 399, 406

Dolphin, 10, 16, 17, 23–25, 30, 31, 35,
39, 45, 48, 54, 65, 71, 72, 77, 79, 82,
83, 85, 86, 89, 100, 114, 115, 117,
127, 128, 130, 161, 167, 179, 180,
182–185, 188–190, 211, 212, 220, 221,
223, 226, 227, 234, 251, 257, 274,
277, 279, 292, 302, 309, 314, 323,
327, 330, 341, 357, 367, 369, 392,
400, 406, 413, 417, 467, 469, 470,
472–474, 476

488 Subject Index

Dolphin driver, 180, 183–185, 188–190
DSM, 4, 5, 8, 12, 22–26, 32, 34, 35,

89, 191, 192, 207, 210–215, 218–221,
225–227, 263–265, 291–293, 296, 297,
307, 308, 351, 417, 418, 422, 428, 430

error handling, 9, 10, 25, 72, 76, 130
Ethernet, 44, 50, 110, 214, 223, 231,

232, 236, 237, 239, 241, 245, 247,
335, 346, 459

Fast Ethernet, 185, 209, 234–236, 242,
369–372, 377–379, 392, 434, 456, 457

Fast Messages, 209, 225, 252, 261, 308
Fastbus, 467
FibreChannel, 469, 470, 475, 476
FireWire (IEEE 1394, SerialBus), 466
flow control, 6, 9, 12, 14–16, 32, 44,

47, 106–108, 110, 114, 160, 165, 203,
213, 226, 233, 237, 401

forward progress, 18, 125, 355
FPGA, 73, 89, 91, 93–96, 99, 100, 121,

431
Futurebus+, 465–469
FutureIO, 35, 475–478

Gigabit Ethernet, 39, 50, 51, 65, 67,
125, 413, 476

GROMOS, 383, 384, 386, 387, 392, 393,
395

GSN, 32

Harness, 247
Hewlett Packard, 23, 26, 34, 282, 383,

394, 467, 473
HIPPI, 32, 475, 476
hpcLine, 367, 476

IBM, 44, 46, 83, 114, 249, 257, 269,
383, 393, 394, 455, 459, 472, 474, 475

iCore, 470
idle symbol, 16–19, 107, 111–113, 142
IEEE 1394 (SerialBus), 35, 466,

477–479
IEEE 1596 (SCI), 3, 22, 23, 85, 191,

192, 399, 470–472
IEEE P2100, 477
iLink (IEEE 1394, SerialBus), 466
Intel, 26, 28, 32, 46, 47, 81, 90, 180,

182, 225, 226, 234, 241, 247, 269,
302, 323, 367–369, 379, 392–394, 430,
434, 471, 474, 476

Intel chip-set
– BX, 65, 234–236, 247, 368, 369

– FX, 47, 128, 223, 234, 235, 302
– GX, 369
Interconnect Systems Solutions, 115,

473

Large Hadron Collider, 31, 125, 366,
397

LazyThreads, 362
Linpack, 373, 374
Linux, 64, 65, 86, 128, 179, 180, 182,

183, 185–188, 190, 211, 221, 223, 232,
234–236, 239, 247, 282, 314, 318,
321–324, 327, 328, 330, 351, 360, 361,
370, 379, 411, 434, 444, 445

Lockheed Martin, 473
LVDS, 22, 471, 472, 475

memory barrier, 10, 273
Memory Channel, 32, 45, 209, 329
MESI, 28, 474
mezzanine connection, 83, 84, 369, 475
microcode, 29, 34, 427
MMU, 179, 182, 183, 187, 197, 279,

427, 428
MOESI, 465
monitoring, 117, 125, 344, 351, 413,

417–421, 425, 430, 431, 434, 436, 437,
440, 441

MPI, 25, 41–44, 56, 62, 63, 65, 67, 72,
86, 161–163, 165, 188, 193, 205, 209,
210, 241, 249, 251–253, 255–260, 281,
291, 333, 334, 370, 371, 373, 374,
376–378, 413, 444

MPICH, 62, 241, 371, 372, 377–379
multithreading, 305–307
MuSE, 352–358, 360–363
Myricom, 31, 39, 45, 47, 54, 64, 190
Myrinet, 31, 32, 39, 45, 48, 50–54, 58,

61–63, 65–67, 190, 210, 224, 225, 240,
241, 247, 474

network adapter, 31, 32, 52, 54, 67,
115, 226, 274, 283, 475

network interface, 32–34, 40, 43, 45–48,
50, 52, 56, 65, 114, 117, 118, 224,
270, 429, 455, 456

network topology
– Banyan, 126, 139, 147
– multi-cube, 167, 170–172, 174
– multistage, 7, 134, 135, 139, 147
– ringlet, 7, 10, 19, 139, 141–143,

145–147, 151, 152, 155–157, 159–163,
165, 169, 171–174, 274, 341, 350, 370,
371, 410, 417

Subject Index 489

– torus, 7, 84, 134, 167, 170, 174, 258,
259, 370, 378, 438, 443, 451, 455, 457

NGIO, 35, 476–478
Norsk Data, 467, 472
NUMA, 5, 23, 31, 42, 45, 89, 136, 137,

282, 283, 286, 288, 289, 308, 328, 349,
366, 383, 386, 394, 395, 417, 418, 433

NUMA-Q, 26–29, 282, 383, 474
NUMALiiNE, 383

Origin 2000, 33, 258–260, 282, 383, 394

PAPERS, 32
ParaStation, 32, 225, 241
PCI, 25, 31, 39, 45–48, 51, 52, 54,

59, 61, 65–67, 71, 73–75, 78–83, 85,
89–92, 94, 95, 97, 100, 132, 161, 162,
165, 167, 168, 174, 182, 213, 221,
223, 241, 251, 277, 293, 294, 300,
369, 401, 403, 408, 410, 417, 418,
427, 431, 476

– PCI32, 71, 75–79, 81–83
– PCI64, 71, 75, 78, 79, 82, 84
performance evaluation, 48, 63, 89, 249,

256, 260, 418–420, 430
PIO, 194, 211, 237, 401
Pthreads, 305, 307
PULC, 241
PVM, 41–43, 56, 63, 66, 72, 86, 209,

239–241, 243, 245, 257, 281, 291, 334,
370, 459

PVM-SCI, 239–243, 245–247

queue allocation, 8, 12, 15, 16, 108–110,
113

Reliant Unix, 211, 221
ring buffer, 79, 189, 218, 233, 237, 245,

246, 254, 406, 420
RMA, 24, 29, 30, 33, 71, 73, 179, 212,

263, 267, 268, 273, 292, 322, 323,
388, 390, 393, 420, 431

RPC, 42, 189, 413
rule-based routing, 120

S3.mp, 34
SAN (system area network), 3, 6, 9, 23,

39, 47, 50, 78, 81–83, 209, 210, 241,
245, 294

SBus, 23, 24, 71, 73–77, 79–81, 83, 85,
211, 221, 222, 227, 357, 475

Scali, 25, 63, 86, 167–169, 174, 180,
182–185, 188–190, 242, 249, 251–254,
256, 257, 260, 367, 369, 380, 476

Scali driver, 180, 182–185, 188–190
ScaMPI, 63, 161, 247, 249, 253–260,

377, 379
SCI extensions, 3, 22, 23, 35, 116, 151,

293, 477
SCI packet, 9, 10, 12–14, 16–18, 73–77,

79, 91, 93, 95, 105, 106, 114, 128,
152, 168, 170, 171, 196, 202, 209,
215, 222, 225, 400, 408, 418, 419, 421

– format, 15, 107, 168
– request echo, 15, 18, 108
– request send, 15, 16, 18
– request/response echo, 14, 106, 108,

113, 114, 154, 158, 160, 162
– request/response send, 12, 16, 18,

106, 108, 113
– response echo, 15
– response send, 15, 16
SCI switch, 117, 134–137, 141, 143,

144, 147, 341, 407, 413, 444
SCI-VM, 292–300, 302, 304–309
SCILAN, 226, 235
SCINET, 125–127, 145, 148
SciOS, 307, 313, 314, 317, 324–330
SCIzzL, 468, 471
scrubber node, 19, 113
Sequent, 26, 27, 34, 115, 282, 383, 467,

472, 474, 477
Serial Express (IEEE P2100), 35, 477
SerialBus (IEEE 1394), 35, 466,

477–479
SerialPlus (IEEE P2100), 23, 35,

477–479
ServerNet, 33
SGI, 30, 32, 45, 249, 257, 282, 304, 383,

384, 393, 394, 476
SHRIMP, 32, 33, 210, 225, 430
Siemens, 25, 30, 31, 71, 83, 85, 221,

368, 369, 476
SISAL, 352, 361
SISCI, 86, 181, 305, 307, 309, 399, 400,

413, 414
SLDRAM, 23, 471
SMI, 188, 282–284, 286–289, 383, 386,

388, 389
SMiLE, 350–352, 356, 357, 359, 360,

417–419, 425–428, 430, 431
SMP, 5, 26–30, 32, 51, 185, 188, 249,

251, 253, 264, 291, 292, 296, 298,
305, 308, 309, 329, 334, 433

sockets, 40, 44, 209–216, 218, 219,
222–227, 243

490 Subject Index

Solaris, 63, 86, 185, 186, 211, 221,
234–236, 239, 282, 357, 370, 379, 434,
444, 445

split transaction, 72, 73, 90, 479
Split-C, 253, 267–269, 271–274, 276,

277, 279, 308
SSLib, 210–214, 216, 218–227, 246
store barrier, 78, 81, 220
SUN, 24, 34, 71, 77, 249, 257, 318, 379,

383, 434, 476
SyncLink, 23, 35

TCP, 39–41, 44, 64–67, 185, 209–211,
214, 215, 218, 219, 223–226, 231–233,
235, 237, 239–241, 243–245, 247, 371,
411, 413, 434, 436, 438

TreadMarks, 307, 329

U-Net, 33, 209, 210, 224, 240
UDP, 44, 209, 212, 214, 215, 219, 224,

239, 240, 243, 411, 413, 438
UMA, 136, 137, 394

VI Architecture, 33, 72, 83, 86, 205,
210, 224, 226, 241

virtual file system, 318, 329
Vitesse, 29, 115, 470, 472–474
VMMC, 32, 225

Windows NT, 65, 83, 86, 128, 185, 186,
226, 235, 239, 282, 284, 292, 295,
298, 302, 307, 309, 313–315, 317–322,
329, 370, 379, 392, 411, 413, 444

work stealing, 265, 352, 355, 356, 358,
359, 362

Yasmin, 188, 370

zero-memory-copy, 32, 41, 42, 52, 61,
62, 64, 241, 357

	Frontmatter
	SCI and Competitive Interconnects for Cluster Computing
	SCI and Competitive Interconnects for Cluster Computing
	The SCI Standard and Applications of SCI
	A Comparison of Three Gigabit Technologies: SCI, Myrinet and SGI/Cray T3D
	SCI Hardware

	SCI Hardware
	Dolphin SCI Adapter Cards
	The TUM PCI/SCI Adapter
	Interconnection Networks with SCI

	Interconnection Networks with SCI
	Low-Level SCI Protocols and Their Application to Flexible Switches
	SCI Rings, Switches, and Networks for Data Acquisition Systems
	Scalability of SCI Ringlets
	Affordable Scalability Using Multi-Cubes
	Device Driver Software and Low-Level APIs

	Device Driver Software and Low-Level APIs
	Interfacing SCI Device Drivers to Linux
	SCI Physical Layer API
	Message Passing Libraries

	Message Passing Libraries
	SCI Sockets Library
	TCP/IP over SCI under Linux
	PVM for SCI Clusters
	ScaMPI -- Design and Implementation
	Shared Memory Programming Models and Runtime Mechanisms

	Shared Memory Programming Models and Runtime Mechanisms
	Shared Memory vs Message Passing on SCI: A Case Study Using Split-C
	A Shared Memory Programming Interface for SCI Clusters
	True Shared Memory Programming on SCI-based Clusters
	Implementing a File System Interface to SCI
	Programming SCI Clusters Using Parallel CORBA Objects
	The MuSE Runtime System for SCI Clusters: A Flexible Combination of On-Stack Execution and Work Stealing
	Benchmark Results and Application Experiences

	Benchmark Results and Application Experiences
	Large-Scale SCI Clusters in Practice: Architecture and Performance
	Shared Memory Parallelization of the GROMOS96 Molecular Dynamics Code
	SCI Prototyping for the Second Level Trigger System of the ATLAS Experiment
	Tools for SCI Clusters

	Tools for SCI Clusters
	SCI Monitoring Hardware and Software: Supporting Performance Evaluation and Debugging
	Monitoring SCI Clusters
	Multi-User System Management on SCI Clusters
	Perspectives

	Perspectives
	Industrial Takeup of SCI and Future Developments

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

